In the many-core era, scalable coherence and on-chip interconnects are crucial for shared memory processors. While snoopy coherence is common in small multicore systems, directory-based coherence is the de facto choice for scalability to many cores, as snoopy relies on ordered interconnects which do not scale. However, directory-based coherence does not scale beyond tens of cores due to excessive directory area overhead or inaccurate sharer tracking. Prior techniques supporting ordering on arbitrary unordered networks are impractical for full multicore chip designs.We present SCORPIO, an ordered mesh Network-on-Chip (NoC) architecture with a separate fixed-latency, bufferless network to achieve distributed global ordering. Message delivery is decoupled from the ordering, allowing messages to arrive in any order and at any time, and still be correctly ordered. The architecture is designed to plug-and-play with existing multicore IP and with practicality, timing, area, and power as top concerns. Full-system 36 and 64-core simulations on SPLASH-2 and PARSEC benchmarks show an average application runtime reduction of 24.1% and 12.9%, in comparison to distributed directory and AMD HyperTransport coherence protocols, respectively.The SCORPIO architecture is incorporated in an 11 mm-by-13 mm chip prototype, fabricated in IBM 45nm SOI technology, comprising 36 Freescale e200 Power Architecture TM cores with private L1 and L2 caches interfacing with the NoC via ARM AMBA, along with two Cadence on-chip DDR2 controllers. The chip prototype achieves a post synthesis operating frequency of 1 GHz (833 MHz post-layout) with an estimated power of 28.8 W (768 mW per tile), while the network consumes only 10% of tile area and 19 % of tile power.
Addressing the challenges of extreme scale computing requires holistic design of new programming models and systems that support those models. This paper discusses the Angstrom processor, which is designed to support a new Self-aware Computing (SEEC) model. In SEEC, applications explicitly state goals, while other systems components provide actions that the SEEC runtime system can use to meet those goals. Angstrom supports this model by exposing sensors and adaptations that traditionally would be managed independently by hardware. This exposure allows SEEC to coordinate hardware actions with actions specified by other parts of the system, and allows the SEEC runtime system to meet application goals while reducing costs (e.g., power consumption).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.