Clostridium difficile infection remains a major healthcare burden. Until the recent introduction of fidaxomicin, antimicrobial treatments were limited to metronidazole and vancomycin. The emergence of epidemic C. difficile PCR ribotype 027 and its potential link to decreased antibiotic susceptibility highlight the lack of large-scale antimicrobial susceptibility and epidemiological data available. We report results of epidemiological and antimicrobial susceptibility investigations of C. difficile isolates collected prior to fidaxomicin introduction, establishing important baseline data. Thirty-nine sites in 22 countries submitted a total of 953 C. difficile isolates for PCR ribotyping, toxin testing, and susceptibility testing to metronidazole, vancomycin, fidaxomicin, rifampicin, moxifloxacin, clindamycin, imipenem, chloramphenicol, and tigecycline. Ninety-nine known ribotypes were identified. Ribotypes 027, 014, 001/072, and 078 were most frequently isolated in line with previous European studies. There was no evidence of resistance to fidaxomicin, and reduced susceptibility to metronidazole and vancomycin was also scarce. Rifampicin, moxifloxacin, and clindamycin resistance (13%, 40%, and 50% of total isolates, respectively) were evident in multiple ribotypes. There was a significant correlation between lack of ribotype diversity and greater antimicrobial resistance (measured by cumulative resistance score). Well-known epidemic ribotypes 027 and 001/072 were associated with multiple antimicrobial resistance, but high levels of resistance were also observed, particularly in 018 and closely related emergent ribotype 356 in Italy. This raises the possibility of antimicrobial exposure as the underlying reason for their appearance, and highlights the need for ongoing epidemiological and antimicrobial resistance surveillance.
is the main causative agent of antibiotic-associated and health care-associated infective diarrhea. Recently, there has been growing interest in alternative sources of other than patients with infection (CDI) and the hospital environment. Notably, the role of -colonized patients as a possible source of transmission has received attention. In this review, we present a comprehensive overview of the current understanding of colonization. Findings from gut microbiota studies yield more insights into determinants that are important for acquiring or resisting colonization and progression to CDI. In discussions on the prevalence of colonization among populations and its associated risk factors, colonized patients at hospital admission merit more attention, as findings from the literature have pointed to their role in both health care-associated transmission of and a higher risk of progression to CDI once admitted. colonization among patients at admission may have clinical implications, although further research is needed to identify if interventions are beneficial for preventing transmission or overcoming progression to CDI.
Fidaxomicin susceptibility was retained post-introduction, and resistance to metronidazole and vancomycin was rare. Continued surveillance is needed, with more accurate classification and clarification of ribotype subtypes to further understand their role in the spread of resistance. Other factors may also influence changes in prevalence of C. difficile ribotypes with reduced antibiotic susceptibility.
Clostridium difficile infection (CDI) has been primarily treated with metronidazole or vancomycin. High recurrence rates, the emergence of epidemic PCR ribotypes (RTs) and the introduction of fidaxomicin in Europe in 2011 necessitate surveillance of antimicrobial resistance and CDI epidemiology. The ClosER study monitored antimicrobial susceptibility and geographical distribution of C. difficile RTs pre-and post-fidaxomicin introduction. From 2011 to 2016, 28 European countries submitted isolates or faecal samples for determination of PCR ribotype, toxin status and minimal inhibitory concentrations (MICs) of metronidazole, vancomycin, rifampicin, fidaxomicin, moxifloxacin, clindamycin, imipenem, chloramphenicol and tigecycline. RT diversity scores for each country were calculated and mean MIC results used to generate cumulative resistant scores (CRSs) for each isolate and country. From 40 sites, 3499 isolates were analysed, of which 95% (3338/3499) were toxin positive. The most common of the 264 RTs isolated was RT027 (mean prevalence 11.4%); however, RT prevalence varied greatly between countries and between years. The fidaxomicin geometric mean MIC for years 1-5 was 0.04 mg/L; only one fidaxomicin-resistant isolate (RT344) was submitted (MIC ≥ 4 mg/L). Metronidazole and vancomycin geometric mean MICs were 0.46 mg/L and 0.70 mg/L, respectively. Of prevalent RTs, RT027, RT017 and RT012 demonstrated resistance or reduced susceptibility to multiple antimicrobials. RT diversity was inversely correlated with mean CRS for individual countries (Pearson coefficient r = − 0.57). Overall, C. difficile RT prevalence remained stable in 2011-2016. Fidaxomicin susceptibility, including in RT027, was maintained post-introduction. Reduced ribotype diversity in individual countries was associated with increased antimicrobial resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.