Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century.
We present the most extensive phylogenetic analysis to date, to our knowledge, of higher-level nemertean relationships, based on sequence data from four different genes (the nuclear genes for nuclear large subunit rRNA (28S rRNA) and histone H3 (H3), and the mitochondrial genes for mitochondrial large subunit rRNA (16S rRNA) and cytochrome c oxidase subunit I (COI)). Well-supported clades are, in general, compatible with earlier, more limited, analyses, and current classification is largely in agreement with our results, although there are some notable exceptions. Bdellonemertea (represented by Malacobdella) is found to be a part of Monostilifera, and Polystilifera is the monophyletic sister group to Monostilifera. Cratenemertidae is the sister group to the remaining monostiliferans (including Malacobdella), a group to which we apply the new name Distromatonemertea. Heteronemertea is monophyletic and forms a clade with Hubrechtella; for this clade we introduce the name Pilidiophora. Finally, Pilidiophora and Hoplonemertea (with Malacobdella) form a monophyletic group, and we introduce the name Neonemertea to refer to this group. Palaeonemertea is found to be non-monophyletic and basal among nemerteans.
BackgroundMany marine meiofaunal species are reported to have wide distributions, which creates a paradox considering their hypothesized low dispersal abilities. Correlated with this paradox is an especially high taxonomic deficit for meiofauna, partly related to a lower taxonomic effort and partly to a high number of putative cryptic species. Molecular-based species delineation and barcoding approaches have been advocated for meiofaunal biodiversity assessments to speed up description processes and uncover cryptic lineages. However, these approaches show sensitivity to sampling coverage (taxonomic and geographic) and the success rate has never been explored on mesopsammic Mollusca.ResultsWe collected the meiofaunal sea-slug Pontohedyle (Acochlidia, Heterobranchia) from 28 localities worldwide. With a traditional morphological approach, all specimens fall into two morphospecies. However, with a multi-marker genetic approach, we reveal multiple lineages that are reciprocally monophyletic on single and concatenated gene trees in phylogenetic analyses. These lineages are largely concordant with geographical and oceanographic parameters, leading to our primary species hypothesis (PSH). In parallel, we apply four independent methods of molecular based species delineation: General Mixed Yule Coalescent model (GMYC), statistical parsimony, Bayesian Species Delineation (BPP) and Automatic Barcode Gap Discovery (ABGD). The secondary species hypothesis (SSH) is gained by relying only on uncontradicted results of the different approaches (‘minimum consensus approach’), resulting in the discovery of a radiation of (at least) 12 mainly cryptic species, 9 of them new to science, some sympatric and some allopatric with respect to ocean boundaries. However, the meiofaunal paradox still persists in some Pontohedyle species identified here with wide coastal and trans-archipelago distributions.ConclusionsOur study confirms extensive, morphologically cryptic diversity among meiofauna and accentuates the taxonomic deficit that characterizes meiofauna research. We observe for Pontohedyle slugs a high degree of morphological simplicity and uniformity, which we expect might be a general rule for meiofauna. To tackle cryptic diversity in little explored and hard-to-sample invertebrate taxa, at present, a combined approach seems most promising, such as multi-marker-barcoding (i.e., molecular systematics using mitochondrial and nuclear markers and the criterion of reciprocal monophyly) combined with a minimum consensus approach across independent methods of molecular species delineation to define candidate species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.