Although G protein-coupled receptors are often categorized in terms of their primary coupling to a given type of G␣ protein subunit, it is now well established that many show promiscuous coupling and activate multiple signaling pathways. Furthermore, some agonists selectively activate signaling pathways by promoting interaction between distinct receptor conformational states and particular G␣ subunits or alternative signaling proteins. We have tested the capacity of agonists to stimulate Ca 2ϩ release, cAMP accumulation, and changes in extracellular acidification rate (ECAR) at the human ␣ 1A -adrenoceptor. Signaling bias factors were determined by novel application of an operational model of agonism and compared with the reference endogenous agonist norepinephrine; values significantly different from 1.0 indicated an agonist that promoted receptor conformations distinct from that favored by norepinephrine. Oxymetazoline was a full agonist for ECAR and a partial agonist for Ca 2ϩ release (bias factor 8.2) but failed to stimulate cAMP production. Phenylephrine showed substantial bias toward ECAR versus Ca 2ϩ release or cAMP accumulation (bias factors 21 and 33, respectively) but did not display bias between Ca 2ϩ and cAMP pathways. Cirazoline and N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide (A61603) displayed bias toward cAMP relative to Ca 2ϩ release (bias factors of 7.4 and 8.6). It is noteworthy that epinephrine, a second endogenous adrenoceptor agonist, did not display bias relative to norepinephrine. Our finding that phenylephrine displayed significant signaling bias, despite being highly similar in structure to epinephrine, indicates that subtle differences in agonist-receptor interaction can affect conformational changes in cytoplasmic domains and thereby modulate the repertoire of effector proteins that are activated.
Adrenoceptors play an important role in adipose tissue biology and physiology that includes regulating the synthesis and storage of triglycerides (lipogenesis), the breakdown of stored triglycerides (lipolysis), thermogenesis (heat production), glucose metabolism, and the secretion of adipocyte‐derived hormones that can control whole‐body energy homeostasis. These processes are regulated by the sympathetic nervous system through actions at different adrenoceptor subtypes expressed in adipose tissue depots. In this review, we have highlighted the role of adrenoceptor subtypes in white, brown, and brite adipocytes in both rodents and humans and have included detailed analysis of adrenoceptor expression in human adipose tissue and clonally derived adipocytes. We discuss important considerations when investigating adrenoceptor function in adipose tissue or adipocytes. Linked Articles This article is part of a themed section on Adrenoceptors—New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc
There are two types of adipose tissue with distinct functions-white adipose tissue stores chemical energy as triglycerides, whereas brown adipose tissue consumes energy and releases heat (thermogenesis) in response to sympathetic nerve activity. In humans, treatments that promote greater brown adipose tissue deposition and/or activity would be highly beneficial in regimes aimed at reducing obesity. Adult humans have restricted populations of prototypical brown adipocytes in the neck and chest areas, but recent advances have established that adipocytes with similar properties, termed "brite" adipocytes, can be recruited in subcutaneous depots thought to be primarily white adipose tissue. These brite adipocytes express the protein machinery required for thermogenesis, but to assess brite adipocytes as viable therapeutic targets we need to understand how to promote conversion of white adipocytes to brite adipocytes and ways to increase optimal energy consumption and thermogenesis in these brite adipocytes. This can be accomplished by pharmacological and nutritional therapies to differing degrees, as reviewed in detail here.
The type 2 diabetes epidemic makes it important to find insulin-independent ways to improve glucose homeostasis. This study examines the mechanisms activated by a dual β2-/β3-adrenoceptor agonist, BRL37344, to increase glucose uptake in skeletal muscle and its effects on glucose homeostasis in vivo. We measured the effect of BRL37344 on glucose uptake, glucose transporter 4 (GLUT4) translocation, cAMP levels, β2-adrenoceptor desensitization, β-arrestin recruitment, Akt, AMPK, and mammalian target of rapamycin (mTOR) phosphorylation using L6 skeletal muscle cells as a model. We further tested the ability of BRL37344 to modulate skeletal muscle glucose metabolism in animal models (glucose tolerance tests and in vivo and ex vivo skeletal muscle glucose uptake). In L6 cells, BRL37344 increased GLUT4 translocation and glucose uptake only by activation of β2-adrenoceptors, with a similar potency and efficacy to that of the nonselective β-adrenoceptor agonist isoprenaline, despite being a partial agonist with respect to cAMP generation. GLUT4 translocation occurred independently of Akt and AMPK phosphorylation but was dependent on mTORC2. Furthermore, in contrast to isoprenaline, BRL37344 did not promote agonist-mediated desensitization and failed to recruit β-arrestin1/2 to the β2-adrenoceptor. In conclusion, BRL37344 improved glucose tolerance and increased glucose uptake into skeletal muscle in vivo and ex vivo through a β2-adrenoceptor-mediated mechanism independently of Akt. BRL37344 was a partial agonist with respect to cAMP, but a full agonist for glucose uptake, and importantly did not cause classical receptor desensitization or internalization of the receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.