Disentangling individual-and population-level variation in migratory movements is necessary for understanding migration at the species level. However, very few studies have analyzed these patterns across large portions of species' distributions. We compiled a large telemetry dataset on the globally endangered Egyptian Vulture Neophron percnopterus (94 individuals, 188 completed migratory journeys), tracked across ∼70% of the species' global range, to analyze spatial and temporal variability of migratory movements within and among individuals and populations. We found high migratory connectivity at large spatial scales (i.e., different subpopulations showed little overlap in wintering areas), but very diffuse migratory connectivity within subpopulations, with wintering ranges up to 4,000 km apart for birds breeding in the same region and each subpopulation visiting up to 28 countries (44 in total). Additionally, Egyptian Phipps et al. Egyptian Vulture Migration Flexibility Vultures exhibited a high level of variability at the subpopulation level and flexibility at the individual level in basic migration parameters. Subpopulations differed significantly in travel distance and straightness of migratory movements, while differences in migration speed and duration differed as much between seasons and among individuals within subpopulations as between subpopulations. The total distances of the migrations completed by individuals from the Balkans and Caucasus were up to twice as long and less direct than those in Western Europe, and consequently were longer in duration, despite faster migration speeds. These differences appear to be largely attributable to more numerous and wider geographic barriers (water bodies) along the eastern flyway. We also found that adult spring migrations to Western Europe and the Balkans were longer and slower than fall migrations. We encourage further research to assess the underlying mechanisms for these differences and the extent to which environmental change could affect Egyptian Vulture movement ecology and population trends.
To use vocalizations properly for the estimation of owl population size, it is important to identify how environmental factors affect owl calling behaviour. Here, we analyse how intrinsic and extrinsic factors modify the vocal activity of Tawny Owls Strix aluco in two areas of northern Spain. From March 2013 to May 2015, we radiotracked 20 Tawny Owls and also undertook a systematic survey in which we collected data on spontaneous vocal activity (hoot/call) of the tagged owls, plus their mates and neighbours (36 untagged owls). After 223 nights in Valle de Mena and 224 in Duranguesado we obtained a total of 8791 records of vocal activity. The annual proportion of surveys on which an owl called was 6.3% and did not differ between the study areas. Vocal activity of Tawny Owls varied with sex, annual cycle stage and weather. Male owls were significantly more vocal than females year-round, and vocal activity peaked during the incubation and post-breeding periods. Wind and rain adversely affected vocal activity of both sexes throughout the year. Tagged owls were detected more often than untagged owls, which we interpret as an observer effect because the systematic survey ensured that short distances to tagged owls increased the probability of detecting vocal activity. In fact, 2.8% of variation in vocal activity was due to detectability differences between tagged and untagged owls. We conclude that if fieldwork is carried out during the optimum period of the year for vocal detection (i.e. incubation, which in our case was around mid-April), and under good weather conditions (dry and calm nights), censuses based on spontaneous vocal activity would detect only approximately 12% of the true Tawny Owl population.
Natal dispersal, the movement between the birth and the first breeding site, has been rarely studied in long-lived territorial birds with a long-lasting pre-breeding stage. Here we benefited from the long-term monitoring programs of six populations of Egyptian vultures (Neophron percnopterus) from Spain and France to study how the rearing environment determines dispersal. For 124 vultures, we recorded a median dispersal distance of 48 km (range 0–656 km). Linear models were used to assess the effect of population and individual traits on dispersal distance at two spatial scales. Dispersal distances were inversely related to vulture density in the natal population, suggesting that birds perceive the abundance of conspecifics as a signal of habitat quality. This was particularly true for declining populations, so increasing levels of opportunistic philopatry seemed to arise in high density contexts as a consequence of vacancies created by human-induced adult mortality. Females dispersed further than males, but males were more sensitive to the social environment, indicating different dispersal tactics. Both sexes were affected by different individual attributes simultaneously and interactively with this social context. These results highlight that complex phenotype-by-environment interactions should be considered for advancing our understanding of dispersal dynamics in long-lived organisms.
We monitored Peregrine Falcon (Falco peregrinus) population in Bizkaia, Northern Spain, during two decades (1998–2017). Our population increased from 34 to 47 territorial pairs, as did other European populations until the first years of the 21st century, and then declined until 34 territorial pairs in 2017. The combination of catastrophic events (Prestige oil spill), increasing rain in winter and spring, and direct and indirect mortality factors significantly affected incubation onset, productivity and population stability, which in turn could impact on the floater population. Rain in February significantly affected incubation onset, which showed a slight positive trend during the last decade. Juvenile females laid 12 days later than adults, and each adult female started incubation in the same dates every year. However, the proportion of juvenile females did not significantly increase as might have been expected. Moreover, productivity was inversely related to incubation onset dates. Rain in April and May also affected productivity, and combined with short term extreme weather events determined a decreasing productivity during the last decade. Moreover, apart from human persecution (which caused 40.30% of the known deaths of Peregrines), we found 18 cases of breeders affected by infectious diseases, also related to weather. The combined effects of these factors, and the low availability of adequate nesting sites, negatively affected (i) territorial populations, (ii) productivity, and (iii) floater population, which in turn also determined territorial population and productivity.
Carrion production is one of the most crucial yet neglected and understudied processes in food webs and ecosystems. In this study, we performed a large-scale estimation of the maximum potential production and spatial distribution of ungulate carrion biomass from five major sources in peninsular Spain, both anthropogenic (livestock, big game hunting, roadkills) and natural (predation, natural mortality). Using standardised ungulate carrion biomass (kg/year/100km 2 ) estimates, we evaluated the relationship between ungulate carrion production and two ecosystem-level factors: global human modification (GHM) and primary productivity (NDVI). We found that anthropogenic carrion sources supplied c. 60 times more ungulate carrion biomass than natural sources (mean = 90,172 vs. 1,533 kg/year/100km 2 , respectively). Within anthropogenic carrion sources, livestock was by far the major carrion provider (91.1% of the annual production), followed by big game hunting (7.86%) and roadkills (0.05%). Within natural carrion sources, predation of ungulates provided more carrion (0.81%) than natural mortality (0.13%). Likewise, we found that the spatial distribution of carrion differed among carrion sources, with anthropogenic carrion being more aggregated in space than natural carrion. Our models showed that GHM was positively related to carrion production from livestock and roadkills, and that wild ungulate carrion supplied by natural sources and big game hunting was more frequently generated in more productive areas (higher NDVI). These findings indicate a disconnection between the main ungulate carrion source (livestock) and primary productivity. Ongoing socio-economic changes in developed countries (e.g. increase of intensive livestock husbandry and rewilding processes) could lead to additional alteration of carrion production processes, with potential negative impacts at the community and ecosystem levels. Overall, we highlight that carrion biomass quantification should be considered a crucial tool in evaluating ecosystem health and delineating efficient ecosystem management guidelines in the Anthropocene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.