We present a methodology for the regularisation and combination of sparse sampled and irregularly gridded observations from fibre-optic multi-object integral-field spectroscopy. The approach minimises interpolation and retains image resolution on combining sub-pixel dithered data. We discuss the methodology in the context of the Sydney-AAO Multi-object Integralfield spectrograph (SAMI) Galaxy Survey underway at the Anglo-Australian Telescope. The SAMI instrument uses 13 fibre bundles to perform high-multiplex integral-field spectroscopy across a one degree diameter field of view. The SAMI Galaxy Survey is targeting ∼3000 galaxies drawn from the full range of galaxy environments. We demonstrate the subcritical sampling of the seeing and incomplete fill factor for the integral-field bundles results in only a 10% degradation in the final image resolution recovered. We also implement a new methodology for tracking covariance between elements of the resulting datacubes which retains 90% of the covariance information while incurring only a modest increase in the survey data volume.
We present PyWiFeS, a new Python-based data reduction pipeline for the Wide Field Spectrograph (WiFeS). PyWiFeS consists of a series of core data processing routines built on standard scientific Python packages commonly used in astronomical applications. Included in PyWiFeS is an implementation of a new global optical model of the spectrograph which provides wavelengths solutions accurate to ∼0.05Å (RMS) across the entire detector. The core PyWiFeS package is designed to be scriptable to enable batch processing of large quantities of data, and we present a default format for handling of observation metadata and scripting of data reduction.
The Giant Magellan Telescope (GMT) Integral-Field Spectrograph (GMTIFS) c is one of six potential first-light instruments for the 25m-diameter Giant Magellan Telescope. The Australian National University has completed a Conceptual Design Study for GMTIFS. The science cases for GMTIFS are summarized, and the instrument capabilities and design challenges are described. GMTIFS will be the work-horse adaptive-optics instrument for GMT. It contains an integral-field spectrograph (IFS) and Imager accessing the science field, and an On-Instrument Wave-Front Sensor (OIWFS) that patrols the 90 arcsec radius guide field. GMTIFS will address a wide range of science from epoch of reionization studies to forming galaxies at high redshifts and star and planet formation in our Galaxy. It will fully exploit the Laser Tomography Adaptive Optics (LTAO) system on the telescope. The tight image quality and positioning stability requirements that this imposes drive the design complexity. Some cryogenic mechanisms in the IFS must set to ~ 1 μm precision. The Beam-Steering mechanism in the OIWFS must set to milli-arcsecond precision over the guide field, corresponding to ~ 1 μm precision in the f/8 focal plane. Differential atmospheric dispersion must also be corrected to milli-arcsecond precision. Conceptual design solutions addressing these and other issues are presented and discussed.
GMTIFS is the first-generation adaptive optics integral-field spectrograph for the GMT, having been selected through a competitive review process in 2011. The GMTIFS concept is for a workhorse single-object integral-field spectrograph, operating at intermediate resolution (R~5,000 & 10,000) with a parallel imaging channel. The IFS offers variable spaxel scales to Nyquist sample the diffraction limited GMT PSF from λ ~ 1-2.5 μm as well as a 50 mas scale to provide high sensitivity for low surface brightness objects. The GMTIFS will operate with all AO modes of the GMT (Natural guide star-NGSAO, Laser Tomography-LTAO, and, Ground Layer-GLAO) with an emphasis on achieving high skycoverage for LTAO observations. We summarize the principle science drivers for GMTIFS and the major design concepts that allow these goals to be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.