Mode-locked lasers find their use in a large number of applications, for instance, in spectroscopic sensing, distance measurements, and optical communication. To enable widespread use of mode-locked lasers, their on-chip integration is desired. In recent years, there have been multiple demonstrations of monolithic III-V and heterogeneous III-V-on-silicon mode-locked lasers. However, the pulse energy, noise performance, and stability of these mode-locked lasers are limited by the relatively high linear and nonlinear waveguide loss, and the high temperature sensitivity of said platforms. Here, we demonstrate a heterogeneous III-V-on-silicon-nitride (III-V-on-SiN) electrically pumped mode-locked laser. SiN’s low waveguide loss, negligible two-photon absorption at telecom wavelengths, and small thermo-optic coefficient enable low-noise mode-locked lasers with high pulse energies and excellent temperature stability. Our mode-locked laser emits at a wavelength of 1.6 μm, has a pulse repetition rate of 3 GHz, a high on-chip pulse energy of ≈2 pJ, a narrow RF linewidth of 400 Hz, and an optical linewidth <1 MHz. The SiN photonic circuits are fabricated on 200 mm silicon wafers in a CMOS pilot line and include an amorphous silicon waveguide layer for efficient coupling from the SiN to the III-V waveguide. The III-V integration is done by micro-transfer-printing, a technique that enables the transfer of thin-film devices in a massively parallel manner on a wafer scale.
Optical phased arrays (OPAs) with phase-monitoring and phase-control capabilities are necessary for robust and accurate beamforming applications. This paper demonstrates an on-chip integrated phase calibration system where compact phase interrogator structures and readout photodiodes are implemented within the OPA architecture. This enables phase-error correction for high-fidelity beam-steering with linear complexity calibration. A 32-channel OPA with 2.5-µm pitch is fabricated in an Si–SiN photonic stack. The readout is done with silicon photon-assisted tunneling detectors (PATDs) for sub-bandgap light detection with no-process change. After the model-based calibration procedure, the beam emitted by the OPA exhibits a sidelobe suppression ratio (SLSR) of −11 dB and a beam divergence of 0.97° × 0.58° at 1.55-µm input wavelength. Wavelength-dependent calibration and tuning are also performed, allowing full 2D beam steering and arbitrary pattern generation with a low complexity algorithm.
In the current work we present Si and SiN combined photonic built-up for optical phased arrays (OPAs) and other large area photonic integrated circuits. We report low-loss co-integrated SiN waveguides and nearly lossless vertical transitions between Si and SiN layers, as well as efficient Si thermo-optical phase shifter module. OPA consisting of 64 optical antennas forming highly collimated beam with 0.4°× 0.47°divergence is reported. By changing input wavelength, solid-state beam steering of 0°-10°is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.