We have studied the role of the hypoxia-inducible angiogenic growth factor vascular endothelial growth factor (VEGF) in the induction and control of vessel growth in the developing retina of rats and cats, using in situ hybridization techniques. VEGF is expressed successively in two layers of neural retina, the innermost (axon) layer and the inner nuclear layer (INL). In the axon layer, VEGF is expressed transiently by astrocytes as they spread across the layer, closely preceding the formation of superficial vessels. In the INL, VEGF is expressed transiently by somas at the middle of the layer (presumably Muller cells), closely preceding the formation of the deep layer of retinal vessels. We propose that hypoxia caused by the onset of neuronal activity is detected by strategically located populations of neuroglia, first astrocytes, then Muller cells. In response they secrete VEGF, inducing formation of the superficial and deep layers of retinal vessels, respectively. As the vessels become patent, they relieve the hypoxic stimulus, so vessel formation is matched to oxygen demand. This hypothesis was tested experimentally in three ways. Expression of the high affinity flk-1 receptor for VEGF was demonstrated in newly formed retinal vessels, confirming that the secreted VEGF acts on the vessels, in a paracrine fashion. Direct hypoxic regulation of VEGF expression by macroglia was demonstrated in primary cultures of astrocytes and in cells of a glioma line. Hypoxic regulation of VEGF expression in the intact developing retina was demonstrated by showing that oxygen-enriched atmospheres that inhibit vessel formation also suppress endogenous VEGF production.
SUMMARY Genetically modified T cells expressing chimeric antigen receptors (CARs) demonstrate robust responses against lineage restricted, non-essential targets in hematologic cancers. However, in solid tumors, the full potential of CAR T cell therapy is limited by the availability of cell surface antigens with sufficient cancer-specific expression. The majority of CAR targets have been normal self-antigens on dispensable hematopoietic tissues or overexpressed shared antigens. Here, we established that abnormal self-antigens can serve as targets for tumor rejection. We developed a CAR that recognized cancer-associated Tn glycoform of MUC1, a neoantigen expressed in a variety of cancers. Anti-Tn-MUC1 CAR T cells demonstrated target-specific cytotoxicity and successfully controlled tumor growth in xenograft models of T cell leukemia and pancreatic cancer. These findings demonstrate the therapeutic efficacy of CAR T cells directed against Tn-MUC1 and present aberrantly glycosylated antigens as a novel class of targets for tumor therapy with engineered T cells.
SummaryThe interaction between the T-cell receptor (TCR) and its peptide-major histocompatibility complex (pepMHC) ligand plays a critical role in determining the activity and specificity of the T cell. The binding properties associated with these interactions have now been studied in many systems, providing a framework for a mechanistic understanding of the initial events that govern T-cell function. There have been various other reviews that have described the structural and biochemical features of TCR : pepMHC interactions. Here we provide an overview of four areas that directly impact our understanding of T-cell function, as viewed from the perspective of the TCR : pepMHC interaction: (1) relationships between T-cell activity and TCR : pepMHC binding parameters, (2) TCR affinity, avidity and clustering, (3) influence of coreceptors on pepMHC binding by TCRs and T-cell activity, and (4) impact of TCR binding affinity on antigenic peptide specificity.
Although the evolution of protein-coding sequences within genomes is well understood, the same cannot be said of the cis-regulatory regions that control transcription. Yet, changes in gene expression are likely to constitute an important component of phenotypic evolution. We simulated the evolution of new transcription factor binding sites via local point mutations. The results indicate that new binding sites appear and become fixed within populations on microevolutionary timescales under an assumption of neutral evolution. Even combinations of two new binding sites evolve very quickly. We predict that local point mutations continually generate considerable genetic variation that is capable of altering gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.