Signal transducers and activators of transcription (STAT proteins) bind to palindromic sequence elements related to interferon y (IFN-y) activation sites, which were first identified in the promoters of IFN-'yinducible genes. Although the sequences of the natural palindromic STAT-binding elements vary considerably, they conform to the general structure TT(N)5AA. We have systematically examined the effects of the spacing between the TT and AA core half sites on the binding of the STAT complexes activated by IFN-y, interleukin (IL) 6, granulocytemacrophage colony-stimulating factor, and IL-4. We show that (i) as suggested earlier, a core palindromic TT-AA motifwith a 5-bp spacing displays general STAT binding, (ii) a palindromic motif with a spacing of 4 bp selectively binds to complexes containing Stat3, and (iii) a motif with a 6-bp spacing selectively binds the STAT complexes activated by IL-4. We have examined natural elements in the promoters of cytokine-responsive genes that differ in half-site spacing and found that they display binding properties predicted from the synthetic binding sites. Furthermore, the observed differential selective binding characteristics for the most part correlate with the ability to mediate transcriptional activation of transfected test genes in response to the cytokines tested. Our results thus demonstrate that the specificity of STAT-directed transcription in response to particular cytokines or cytokine families depends in part on the spacing of half sites within the conserved response element sequence.
Eltrombopag is a first-in-class, orally bioavailable, small-molecule, nonpeptide agonist of the thrombopoietin receptor (TpoR), which is being developed as a treatment for thrombocytopenia of various etiologies. In vitro studies have demonstrated that the activity of eltrombopag is dependent on expression of TpoR, which activates the signaling transducers and activators of transcription (STAT) and mitogen-activated protein kinase signal transduction pathways. The objective of this preclinical study is to determine if eltrombopag interacts selectively with the TpoR to facilitate megakaryocyte differentiation in platelets. Functional thrombopoietic activity was demonstrated by the proliferation and differentiation of primary human CD34+ bone marrow cells into CD41+ megakaryocytes. Measurements in platelets in several species indicated that eltrombopag specifically activates only the human and chimpanzee STAT pathways. The in vivo activity of eltrombopag was demonstrated by an increase of up to 100% in platelet numbers when administered orally (10 mg/kg per day for 5 days) to chimpanzees. In conclusion, eltrombopag interacts selectively with the TpoR without competing with Tpo, leading to the increased proliferation and differentiation of human bone marrow progenitor cells into megakaryocytes and increased platelet production. These results suggest that eltrombopag and Tpo may be able to act additively to increase platelet production.
Glucocorticoids (GCs) are commonly used to treat inflammatory disease; unfortunately, the long-term use of these steroids leads to a large number of debilitating side effects. The antiinflammatory effects of GCs are a result of GC receptor (GR)-mediated inhibition of expression of proinflammatory genes as well as GR-mediated activation of antiinflammatory genes. Similarly, side effects are most likely due to both activated and repressed GR target genes in affected tissues. An as yet unachieved pharmaceutical goal is the development of a compound capable of separating detrimental side effects from antiinflammatory activity. We describe the discovery and characterization of AL-438, a GR ligand that exhibits an altered gene regulation profile, able to repress and activate only a subset of the genes normally regulated by GCs. When tested in vivo, AL-438 retains full antiinflammatory efficacy and potency comparable to steroids but its negative effects on bone metabolism and glucose control are reduced at equivalently antiinflammatory doses. The mechanism underlying this selective in vitro and in vivo activity may be the result of differential cofactor recruitment in response to ligand. AL-438 reduces the interaction between GR and peroxisomal proliferator-activated receptor gamma coactivator-1, a cofactor critical for steroid-mediated glucose up-regulation, while maintaining normal interactions with GR-interacting protein 1. This compound serves as a prototype for a unique, nonsteroidal alternative to conventional GCs in treating inflammatory disease.
A number of conditions, including osteoporosis, frailty, and sexual dysfunction in both men and women have been improved using androgens. However, androgens are not widely used for these indications because of the side effects associated with these drugs. We describe an androgen receptor (AR) ligand that maintains expected anabolic activities with substantially diminished activity in the prostate. LGD2226 is a nonsteroidal, nonaromatizable, highly selective ligand for the AR, exhibiting virtually no affinity for the other intracellular receptors. We determined that AR bound to LGD2226 exhibits a unique pattern of protein-protein interactions compared with testosterone, fluoxymesterone (an orally available steroidal androgen), and other steroids, suggesting that LGD2226 alters the conformation of the ligand-binding domain. We demonstrated that LGD2226 is fully active in cell-based models of bone and muscle. LGD2226 exhibited anabolic activity on muscle and bone with reduced impact on prostate growth in rodent models. Biomechanical testing of bones from animals treated with LGD2226 showed strong enhancement of bone strength above sham levels. LGD2226 was also efficacious in a sex-behavior model in male rats measuring mounts, intromissions, ejaculations, and copulation efficiency. These results with an orally available, nonaromatizable androgen demonstrate the important role of the AR and androgens in mediating a number of beneficial effects in bone, muscle, and sexual function independent from the conversion of androgens into estrogenic ligands. Taken together, these results suggest that orally active, nonsteroidal selective androgen receptor modulators may be useful therapeutics for enhancing muscle, bone, and sexual function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.