A study was designed to ascertain the influence of in ovo site of inoculation and embryonic fluid type on the development of Marek's disease (MD) vaccine viremia and efficacy against MD challenge. The experiments were divided into in vitro and in vivo phases. In the in vitro phase, herpesvirus of turkeys/SB-1 vaccine was combined with basal medium eagle (BME) medium (control), amniotic fluid, or allantoic fluid and subsequently titrated on secondary chick embryo fibroblast cultures. There were no significant differences in titer between the virus inoculum carried in BME and the virus inoculum combined with either the allantoic fluid or the amniotic fluid. In the in vivo phase, five routes of inoculation, amniotic, intraembryonic, allantoic, air cell, and subcutaneous at hatch, were compared for generation of protection against virulent MD challenge. Comparisons were made in both specific-pathogen-free and commercial broiler embryos/chicks and, for the amniotic and allantoic routes, injection at either day 17 or day 18 of embryonation. Reisolation of the vaccine virus at day 3 of age was also done for all routes with the exception of the air cell route. Vaccine virus was recovered from all birds tested that were injected in ovo via the amniotic and intraembryonic routes and the subcutaneously at hatch route but was isolated only sporadically from birds inoculated via the allantoic route. Vaccination protective efficacy against virulent MD for all birds vaccinated in ovo via the amniotic or intraembryonic routes and birds vaccinated subcutaneously at hatch was over 90% regardless of day of in ovo injection or bird type. Protective efficacy for vaccines delivered in ovo by either the allantoic or the air cell routes was less than 50% regardless of day of injection or bird type. Therefore, in ovo MD vaccines must be injected either via the amniotic route or the intraembryonic route for optimal performance.
Intestinal health is important for maximising the health, welfare, and performance of poultry. In addition, intestinal health issues in poultry can have devastating financial impacts for producers, and food safety concerns for consumers. Until recently, intestinal health issues were seen as a handful of known infectious agents leading to a set of severe and identifiable named diseases. There is however an emerging area which depicts intestinal health as a more complex and multifaceted system than previously known. Recent progress in technology suitable for microbial community analysis has evolved our understanding of the chicken intestinal microbiome. It is now understood that shifts in the composition of microbial communities can occur. These shifts can result in a series of implications, including: disease, welfare, environmental, and food safety concerns. Minor shifts in intestinal microbial balance can result in a wide continuum of disease presentations ranging from severe to mild clinical, subclinical or asymptotic. Differential diagnosis of poultry intestinal health issues may be challenging and is important for applying appropriate treatment options. This review discusses new and emerging topics in broiler chicken intestinal health, with a focus on microbial composition, newly discovered microbial shifts in classical poultry diseases, range in severity of enteric diseases, newly identified organisms in normal intestinal flora, implications of shifts in intestinal microbial communities and diagnosis of emerging intestinal health issues in poultry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.