Neuronal receptive fields (RFs) play crucial roles in visual processing. While the linear RFs of early neurons have been well studied, RFs of cortical complex cells are nonlinear and therefore difficult to characterize, especially in the context of natural stimuli. In this study, we used a nonlinear technique to compute the RFs of complex cells from their responses to natural images. We found that each RF is well described by a small number of subunits, which are oriented, localized, and bandpass. These subunits contribute to neuronal responses in a contrast-dependent, polarity-invariant manner, and they can largely predict the orientation and spatial frequency tuning of the cell. Although the RF structures measured with natural images were similar to those measured with random stimuli, natural images were more effective for driving complex cells, thus facilitating rapid identification of the subunits. The subunit RF model provides a useful basis for understanding cortical processing of natural stimuli.
A crucial step in understanding the function of a neural circuit in visual processing is to know what stimulus features are represented in the spiking activity of the neurons. For neurons with complex, nonlinear response properties, characterization of feature representation requires measurement of their responses to a large ensemble of visual stimuli and an analysis technique that allows identification of relevant features in the stimuli. In the present study, we recorded the responses of complex cells in the primary visual cortex of the cat to spatiotemporal random-bar stimuli and applied spike-triggered correlation analysis of the stimulus ensemble. For each complex cell, we were able to isolate a small number of relevant features from a large number of null features in the random-bar stimuli. Using these features as visual stimuli, we found that each relevant feature excited the neuron effectively in isolation and contributed to the response additively when combined with other features. In contrast, the null features evoked little or no response in isolation and divisively suppressed the responses to relevant features. Thus, for each cortical complex cell, visual inputs can be decomposed into two distinct types of features (relevant and null), and additive and divisive interactions between these features may constitute the basic operations in visual cortical processing.
A central hypothesis concerning sensory processing is that the neuronal circuits are specifically adapted to represent natural stimuli efficiently. Here we show a novel effect in cortical coding of natural images. Using spike-triggered average or spike-triggered covariance analyses, we first identified the visual features selectively represented by each cortical neuron from its responses to natural images. We then measured the neuronal sensitivity to these features when they were present in either natural images or random stimuli. We found that in the responses of complex cells, but not of simple cells, the sensitivity was markedly higher for natural images than for random stimuli. Such elevated sensitivity leads to increased detectability of the visual features and thus an improved cortical representation of natural scenes. Interestingly, this effect is due not to the spatial power spectra of natural images, but to their phase regularities. These results point to a distinct visual-coding strategy that is mediated by contextual modulation of cortical responses tuned to the spatial-phase structure of natural scenes.
It has been proposed that sensory neurons are adapted to the statistical structure of the natural environment in order to encode natural stimuli efficiently. While spatiotemporal correlations in luminance signals may be decorrelated by neurons in early visual processing stages, higher-order correlations, such as those in the orientation domain, are likely to persist in the input representation until the cortical level. In this study, we first examine orientation correlations in natural stimuli across brief time intervals and across nearby regions of space, and find strong correlations in both domains. We then examine contextual modulation of orientation tuning. We find that both temporal and spatial contexts exert a common influence on orientation tuning, shifting tuning away from the orientation of either the adapting (temporal) or surrounding (spatial) grating. Finally, we incorporate this context-mediated repulsive shift in orientation tuning into a model of cortical responses. We find that a direct result of the shift is a reduction of the redundancy in the population responses evoked by the orientation configurations that are most common in natural stimuli. Thus, cortical neurons may be adapted to the statistics of orientation in natural stimuli in order to increase the efficiency of natural stimulus representation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.