We extend the methodology in Yang et al. [SIAM J. Appl. Dyn. Syst. 22, 269–310 (2023)] to learn autonomous continuous-time dynamical systems from invariant measures. The highlight of our approach is to reformulate the inverse problem of learning ODEs or SDEs from data as a PDE-constrained optimization problem. This shift in perspective allows us to learn from slowly sampled inference trajectories and perform uncertainty quantification for the forecasted dynamics. Our approach also yields a forward model with better stability than direct trajectory simulation in certain situations. We present numerical results for the Van der Pol oscillator and the Lorenz-63 system, together with real-world applications to Hall-effect thruster dynamics and temperature prediction, to demonstrate the effectiveness of the proposed approach.
We extend the methodology in [65] to learn autonomous continuous-time dynamical systems from invariant measures. We assume that our data accurately describes the dynamics' asymptotic statistics but that the available time history of observations is insufficient for approximating the Lagrangian velocity. Therefore, invariant measures are treated as the inference data and velocity learning is reformulated as a data-fitting, PDE-constrained optimization problem in which the stationary distributional solution to the Fokker-Planck equation is used as a differentiable surrogate forward model. We consider velocity parameterizations based upon global polynomials, piecewise polynomials, and fully connected neural networks, as well as various objective functions to compare synthetic and reference invariant measures. We utilize the adjoint-state method together with the backpropagation technique to efficiently perform gradient-based parameter identification. Numerical results for the Van der Pol oscillator and Lorenz-63 system, together with real-world applications to Hall-effect thruster dynamics and temperature prediction, are presented to demonstrate the effectiveness of the proposed approach.
With complex throwing patterns of multiple objects, jugglers seemingly defy human limits of reaction time and throwing accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.