This paper shows how to measure the intrinsic complexity and dimensionality of a design space. It assumes that high-dimensional design parameters actually lie in a much lower-dimensional space that represents semantic attributes—a design manifold. Past work has shown how to embed designs using techniques like autoencoders; in contrast, the method proposed in this paper first captures the inherent properties of a design space and then chooses appropriate embeddings based on the captured properties. We demonstrate this with both synthetic shapes of controllable complexity (using a generalization of the ellipse called the superformula) and real-world designs (glassware and airfoils). We evaluate multiple embeddings by measuring shape reconstruction error, pairwise distance preservation, and captured semantic attributes. By generating fundamental knowledge about the inherent complexity of a design space and how designs differ from one another, our approach allows us to improve design optimization, consumer preference learning, geometric modeling, and other design applications that rely on navigating complex design spaces. Ultimately, this deepens our understanding of design complexity in general.
This paper shows how to measure the complexity and reduce the dimensionality of a geometric design space. It assumes that high-dimensional design parameters actually lie in a much lower-dimensional space that represents semantic attributes. Past work has shown how to embed designs using techniques like autoencoders; in contrast, this paper quantifies when and how various embeddings are better than others. It captures the intrinsic dimensionality of a design space, the performance of recreating new designs for an embedding, and the preservation of topology of the original design space. We demonstrate this with both synthetic superformula shapes of varying non-linearity and real glassware designs. We evaluate multiple embeddings by measuring shape reconstruction error, topology preservation, and required semantic space dimensionality. Our work generates fundamental knowledge about the inherent complexity of a design space and how designs differ from one another. This deepens our understanding of design complexity in general.
In our previous research, we examined whether minimally trained crowd workers could find, categorize, and assess sidewalk accessibility problems using Google Street View (GSV) images. This poster paper presents a first step towards combining automated methods (e.g., machine vision-based curb ramp detectors) in concert with human computation to improve the overall scalability of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.