Soft implant surfaces should be designed with an eye toward natural, healthy biointerfaces, which use high water content aqueous gel gradients to reduce contact pressures and frictional shear stresses and thus reduce inflammation and discomfort.
Silicone elastomer medical implants are ubiquitous in medicine, particularly for breast augmentation. However, when these devices are placed within the body, disruption of the natural biological interfaces occurs, which significantly changes the native energy-dissipation mechanisms of living systems. These new interfaces can introduce non-physiological contact pressures and tribological conditions that provoke inflammation and soft tissue damage. Despite their significance, the biotribological properties of implant-tissue and implant-extracellular matrix (ECM) interfaces remain poorly understood. Here, we developed an in vitro model of soft tissue damage using a custom-built in situ biotribometer mounted onto a confocal microscope. Sections of commercially-available silicone breast implants with distinct and clinically relevant surface roughness ([Formula: see text]m, [Formula: see text]m, and [Formula: see text]m) were mounted to spherically-capped hydrogel probes and slid against collagen-coated hydrogel surfaces as well as healthy breast epithelial (MCF10A) cell monolayers to model implant-ECM and implant-tissue interfaces. In contrast to the “smooth” silicone implants ([Formula: see text]m), we demonstrate that the “microtextured” silicone implant ([Formula: see text]m) induced higher frictional shear stress ([Formula: see text] Pa), which led to greater collagen removal and cell rupture/delamination. Our studies may provide insights into post-implantation tribological interactions between silicone breast implants and soft tissues.
Correction for ‘Aqueous surface gels as low friction interfaces to mitigate implant-associated inflammation’ by Allison L. Chau et al., J. Mater. Chem. B, 2020, 8, 6782–6791, DOI: 10.1039/D0TB00582G.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.