Multivalency as a key principle in nature has been successfully adopted for the design and synthesis of artificial glycoligands by attaching multiple copies of monosaccharides to a synthetic scaffold. Besides their potential in various applied areas, e.g. as antiviral drugs, for the vaccine development and as novel biosensors, such glycomimetics also allow for a deeper understanding of the fundamental aspects of multivalent binding of both artificial and natural ligands. However, most glycomimetics so far neglect the purposeful arranged heterogeneity of their natural counterparts, thus limiting more detailed insights into the design and synthesis of novel glycomimetics. Therefore, this work presents the synthesis of monodisperse glycooligomers carrying different sugar ligands at well-defined positions along the backbone using for the first time sequential click chemistry and stepwise assembly of functional building blocks on solid support. This approach allows for straightforward access to sequence-defined, multivalent glycooligomers with full control over number, spacing, position, and type of sugar ligand. We demonstrate the synthesis of a set of heteromultivalent oligomers presenting mannose, galactose, and glucose residues. All heteromultivalent structures show surprisingly high affinities toward Concanavalin A lectin receptor in comparison to their homomultivalent analogues presenting the same number of binding ligands. Detailed studies of the ligand/receptor interaction using STD-NMR and 2fFCS indeed indicate a change in binding mechanism for trivalent glycooligomers presenting mannose or combinations of mannose and galactose residues. We find that galactose residues do not participate in the binding to the receptor, but they promote steric shielding of the heteromultivalent glycoligands and thus result in an overall increase in affinity. Furthermore, the introduction of nonbinding ligands seems to suppress receptor clustering of multivalent ligands. Overall these results support the importance of heteromultivalency specifically for the design of novel glycoligands and help to promote a fundamental understanding of multivalent binding modes.
DC-SIGN is a cell-surface receptor for several pathogenic threats, such as HIV, Ebola virus, or Mycobacterium tuberculosis. Multiple attempts to develop inhibitors of the underlying carbohydrate-protein interactions have been undertaken in the past fifteen years. Still, drug-like DC-SIGN ligands are sparse, which is most likely due to its hydrophilic, solvent-exposed carbohydrate-binding site. Herein, we report on a parallel fragment screening against DC-SIGN applying SPR and a reporter displacement assay, which complements previous screenings using F NMR spectroscopy and chemical fragment microarrays. Hit validation by SPR and H- N HSQC NMR spectroscopy revealed that although no fragment bound in the primary carbohydrate site, five secondary sites are available to harbor drug-like molecules. Building on key interactions of the reported fragment hits, these pockets will be targeted in future approaches to accelerate the development of DC-SIGN inhibitors.
Mammalian C-type lectin receptors (CTLRS) are involved in many aspects of immune cell regulation such as pathogen recognition, clearance of apoptotic bodies, and lymphocyte homing. Despite a great interest in modulating CTLR recognition of carbohydrates, the number of specific molecular probes is limited. To this end, we predicted the druggability of a panel of 22 CTLRs using DoGSiteScorer. The computed druggability scores of most structures were low, characterizing this family as either challenging or even undruggable. To further explore these findings, we employed a fluorine-based nuclear magnetic resonance screening of fragment mixtures against DC-SIGN, a receptor of pharmacological interest. To our surprise, we found many fragment hits associated with the carbohydrate recognition site (hit rate = 13.5%). A surface plasmon resonance-based follow-up assay confirmed 18 of these fragments (47%) and equilibrium dissociation constants were determined. Encouraged by these findings we expanded our experimental druggability prediction to Langerin and MCL and found medium to high hit rates as well, being 15.7 and 10.0%, respectively. Our results highlight limitations of current in silico approaches to druggability assessment, in particular, with regard to carbohydrate-binding proteins. In sum, our data indicate that small molecule ligands for a larger panel of CTLRs can be developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.