The potential for recombining intact polyketide synthase (PKS) modules has been extensively explored. Both enzymesubstrate and protein-protein interactions influence chimeric PKS activity, but their relative contributions are unclear. We now address this issue by studying a library of 11 bimodular and 8 trimodular chimeric PKSs harboring modules from the erythromycin, rifamycin, and rapamycin synthases. Although many chimeras yielded detectable products, nearly all had specific activities below 10% of the reference natural PKSs. Analysis of selected bimodular chimeras, each with the same upstream module, revealed that turnover correlated with the efficiency of intermodular chain translocation. Mutation of the acyl carrier protein (ACP) domain of the upstream module in one chimera at a residue predicted to influence ketosynthase-ACP recognition led to improved turnover. In contrast, replacement of the ketoreductase domain of the upstream module by a paralog that produced the enantiomeric ACP-bound diketide caused no changes in processing rates for each of six heterologous downstream modules compared with those of the native diketide. Taken together, these results demonstrate that protein-protein interactions play a larger role than enzyme-substrate recognition in the evolution or design of catalytically efficient chimeric PKSs.The assembly line architecture of multimodular polyketide synthases (PKSs) 5 represents a promising catalytic framework for combinatorial biosynthesis (1). A particularly well studied example of this family of multienzyme systems is the 6-deoxyerythronolide B synthase (DEBS), which produces 6-deoxyerythronolide B (Fig. 1), the parent aglycone of the macrolide antibiotic erythromycin (2). DEBS is comprised of three distinct homodimeric proteins: DEBS1, DEBS2, and DEBS3, each containing two PKS modules, with each module being responsible for a distinct round of polyketide elongation and modification. DEBS uses propionyl-CoA to prime the loading didomain (LDD) of module 1 and six methylmalonyl-CoA-derived extender units in catalysis of the six cycles of polyketide chain elongation, followed by terminal release of the mature polyketide chain by thioesterase (TE)-catalyzed macrolactone formation.Since the original genetic characterization of DEBS over two decades ago (3, 4), extensive in vivo and in vitro analysis has revealed that specific protein-protein interactions play a critical role in the proper vectorial channeling of biosynthetic intermediates from one PKS module to the next (5). A particularly effective mini-assembly line for mechanistic analysis has been a simple bimodular derivative of DEBS (Fig. 2) harboring modules 1 and 2 with a fused TE domain. This bimodular PKS has served as a prototype for many analogous constructs.The potential for engineering chimeric PKSs by recombining modules from paralogous polyketide biosynthetic pathways has been explored for nearly two decades. Early studies revealed the importance of ACP-KS interactions (6, 7), as well as the utility of intermodul...
The introduction of smart virtual assistants (VAs) and corresponding smart devices brought a new degree of freedom to our everyday lives. Voice-controlled and Internet-connected devices allow intuitive device controlling and monitoring from all around the globe and define a new era of human-machine interaction. Although VAs are especially successful in home automation, they also show great potential as artificial intelligence-driven laboratory assistants. Possible applications include stepwise reading of standard operating procedures (SOPs) and recipes, recitation of chemical substance or reaction parameters to a control, and readout of laboratory devices and sensors. In this study, we present a retrofitting approach to make standard laboratory instruments part of the Internet of Things (IoT). We established a voice user interface (VUI) for controlling those devices and reading out specific device data. A benchmark of the established infrastructure showed a high mean accuracy (95% ± 3.62) of speech command recognition and reveals high potential for future applications of a VUI within the laboratory. Our approach shows the general applicability of commercially available VAs as laboratory assistants and might be of special interest to researchers with physical impairments or low vision. The developed solution enables a hands-free device control, which is a crucial advantage within the daily laboratory routine.
Dedicated to Professor Heribert Offermanns on the occasion of his 75 th birthdayAptamers are single-stranded oligonucleotides composed of RNA or DNA that are able to bind their corresponding targets via molecular recognition. Thus, aptamers can be thought of as nucleic acidbased alternatives to antibodies and have attracted attention as receptors in biosensors. Aptamers seem to be ideal biological recognition elements, since they enable the design of intelligent sensors based on their specific properties. Especially the fact that most aptamers undergo conformational changes during the binding of the target and their oligonucleotide nature can be used to rationally design novel sensing strategies. This review focuses on aptasensors for the detection of small molecules. In the first part, aptamers, their generation and their properties are briefly described. In the second part, different design strategies for aptasensors are reviewed, and examples for the detection of small molecules are given.
The manual counting of colonies on agar plates to estimate the number of viable organisms (so-called colony-forming units-CFUs) in a defined sample is a commonly used method in microbiological laboratories. The automation of this arduous and time-consuming process through benchtop devices with integrated image processing capability addresses the need for faster and higher sample throughput and more accuracy. While benchtop colony counter solutions are often bulky and expensive, we investigated a cost-effective way to automate the colony counting process with smart devices using their inbuilt camera features and a server-based image processing algorithm. The performance of the developed solution is compared to a commercially available smartphone colony counter app and the manual counts of two scientists trained in biological experiments. The comparisons show a high accuracy of the presented system and demonstrate the potential of smart devices to displace well-established laboratory equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.