A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.
Our contribution demonstrates that rhodium, an element that has barely been reported as an active metal for selective dehydrogenation of alkanes becomes a very active, selective, and robust dehydrogenation catalyst when exposed to propane in the form of single atoms at the interface of a solid-supported, highly dynamic liquid Ga–Rh mixture. We demonstrate that the transition to a fully liquid supported alloy droplet at Ga/Rh ratios above 80, results in a drastic increase in catalyst activity with high propylene selectivity. The combining results from catalytic studies, X-ray photoelectron spectroscopy, IR-spectroscopy under reaction conditions, microscopy, and density-functional theory calculations, we obtained a comprehensive microscopy picture of the working principle of the Ga–Rh supported catalytically active liquid metal solution.
Ligand‐modified Rh complexes were physically adsorbed on the surface of porous silica. The resulting materials were subjected to the continuous gas‐phase hydroformylation of C2 and C4 alkenes. The ligands used for catalyst modification were bidentate phosphorus ligands known from the literature, namely, sulfoxantphos (1) and a benzopinacol‐based bulky diphosphite 2. The tested catalyst materials were active and, in particular, selective as in comparable homogeneous liquid‐phase experiments. Long‐term stability experiments over 1000 h on stream showed minor deactivation. A significant increase in the catalyst mass after the reaction was detected by weighing and thermogravimetric analysis. By using headspace‐GC–MS, the mass increase could be attributed to high‐boiling compounds, which are formed in situ during the catalytic reaction itself and accumulate inside the pores of the support. Evidence is given that the initially physisorbed catalyst complexes dissolve in the high‐boiling aldol side‐products, which are suitable solvents for the active catalyst species and provide a liquid‐phase environment held by capillary forces on the support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.