Climate warming changes the phenology of many species. When interacting organisms respond differently, climate change may disrupt their interactions and affect the stability of ecosystems. Here, we used global biodiversity facility occurrence records to examine phenology trends in plants and their associated insect pollinators in Germany since the 1980s. We found strong phenological advances in plants but differences in the extent of shifts among pollinator groups. The temporal trends in plant and insect phenologies were generally associated with interannual temperature variation and thus probably driven by climate change. When examining the synchrony of species-level plant–pollinator interactions, their temporal trends differed among pollinator groups. Overall, plant–pollinator interactions become more synchronized, mainly because the phenology of plants, which historically lagged behind that of the pollinators, responded more strongly to climate change. However, if the observed trends continue, many interactions may become more asynchronous again in the future. Our study suggests that climate change affects the phenologies of both plants and insects and that it also influences the synchrony of plant–pollinator interactions.
Climate warming changes the phenology of many species. When interacting organisms respond differently, climate change may disrupt their interactions and affect the stability of ecosystems. Here, we used GBIF occurrence records to examine phenology trends in plants and their associated insect pollinators in Germany since the 1960s. We found strong phenological advances in plants, but differences in the extent of shifts among pollinator groups. The temporal trends in plant and insect phenologies were generally associated with interannual temperature variation, and thus likely driven by climate change. The phenological advancement of plants did not depend on their level of pollinator dependence. When examining the temporal co-occurrence of plant-pollinator pairs from 1980 onwards, the temporal trends in their synchrony again depended on the pollinator group: while the synchrony of plant-butterfly interactions remained unchanged, interactions with bees and hoverflies tended to become more synchronized, mainly because the phenology of plants responded more strongly to climate change and plants caught up with these pollinators. If the observed trends continue, these interactions are expected to become more asynchronous again in the future. Our study demonstrates that climate change affects the phenologies of interacting groups of organisms, and that it also influences their synchrony.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.