Abstract. The low-frequency emissions from a generic 5 MW wind turbine are investigated numerically. In order to regard airborne noise and structure-borne noise simultaneously, a process chain is developed. It considers fluid–structure coupling (FSC) of a computational fluid dynamics (CFD) solver and a multi-body simulations (MBSs) solver as well as a Ffowcs-Williams–Hawkings (FW-H) acoustic solver. The approach is applied to a generic 5 MW turbine to get more insight into the sources and mechanisms of low-frequency emissions from wind turbines. For this purpose simulations with increasing complexity in terms of considered components in the CFD model, degrees of freedom in the structural model and inflow in the CFD model are conducted. Consistent with the literature, it is found that aeroacoustic low-frequency emission is dominated by the blade-passing frequency harmonics. In the spectra of the tower base loads, which excite seismic emission, the structural eigenfrequencies become more prominent with increasing complexity of the model. The main source of low-frequency aeroacoustic emissions is the blade–tower interaction, and the contribution of the tower as an acoustic emitter is stronger than the contribution of the rotor. Aerodynamic tower loads also significantly contribute to the external excitation acting on the structure of the wind turbine.
Abstract. The low-frequency emissions from a generic 5 MW turbine are investigated numerically. In order to regard airborne noise and structure-borne noise simultaneously a process chain was developed. It considers fluid-structure coupling (FSC) of a computational fluid dynamics (CFD) solver and multibody simulations (MBS) solver as well as a Ffowcs Williams-Hawkings (FW-H) acoustic solver. The approach was applied to a generic 5 MW turbine to get more insight into the sources and mechanisms of low-frequency emissions from wind turbines. For this purpose simulations with increasing complexity in terms of considered components in the CFD model, degrees of freedom in the structural model and inflow in the CFD model were conducted. Consistent with literature, it has been found that aeroacoustic low-frequency emission is dominated by the blade-passing frequency harmonics. The tower base loads, which excite seismic emission, tend to be dominated by structural eigenfrequencies with increasing complexity of the model. The main source of aeroacoustic emissions is the blade-tower interaction and the contribution of the tower as an acoustic emitter is stronger than the contribution of the rotor. Aerodynamic tower loads also significantly contribute to the external excitation acting on the structure of the wind turbine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.