This article introduces AI2D-RST, a multimodal corpus of 1000 English-language diagrams that represent topics in primary school natural sciences, such as food webs, life cycles, moon phases and human physiology. The corpus is based on the Allen Institute for Artificial Intelligence Diagrams (AI2D) dataset, a collection of diagrams with crowdsourced descriptions, which was originally developed to support research on automatic diagram understanding and visual question answering. Building on the segmentation of diagram layouts in AI2D, the AI2D-RST corpus presents a new multi-layer annotation schema that provides a rich description of their multimodal structure. Annotated by trained experts, the layers describe (1) the grouping of diagram elements into perceptual units, (2) the connections set up by diagrammatic elements such as arrows and lines, and (3) the discourse relations between diagram elements, which are described using Rhetorical Structure Theory (RST). Each annotation layer in AI2D-RST is represented using a graph. The corpus is freely available for research and teaching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.