Chemists of all fields currently publish about 50 000 crystal structures per year, the vast majority of which are X‐ray structures. We determined two molecular structures by employing electron rather than X‐ray diffraction. For this purpose, an EIGER hybrid pixel detector was fitted to a transmission electron microscope, yielding an electron diffractometer. The structure of a new methylene blue derivative was determined at 0.9 Å resolution from a crystal smaller than 1×2 μm
2
. Several thousand active pharmaceutical ingredients (APIs) are only available as submicrocrystalline powders. To illustrate the potential of electron crystallography for the pharmaceutical industry, we also determined the structure of an API from its pill. We demonstrate that electron crystallography complements X‐ray crystallography and is the technique of choice for all unsolved cases in which submicrometer‐sized crystals were the limiting factor.
Derzeit publizieren Chemiker aller Fachrichtungen ca. 50 000 Kristallstrukturen pro Jahr,von denen es sich bei der überwältigenden Mehrheit um Rçntgenstrukturen handelt. Wir setzen Elektronen-statt Rçntgenbeugung ein, um die Struktur zweier molekularer Verbindungen zu bestimmen. Zu diesem Zweckw urde ein EIGER-Hybridpixeldetektor an ein Transmissionselektronenmikroskop angebaut und so ein Elektronendiffraktometer konstruiert. Die Struktur eines neuen Methylenblauderivates wurde aus einem Kristall kleiner als 1 2 mm 2 mit einer Auflçsung von 0.9 bestimmt. Mehrere tausend Wirkstoffe sind nur als submikrokristallines Pulver verfügbar.Umdas Potenzial fürdie pharmazeutische Industrie zu verdeutlichen,h aben wir die Struktur eines Wirkstoffs direkt aus einer Tablette bestimmt. Wird emonstrieren, dass Elektronenkristallographie die Rçntgenkristallographie ergänzt und die Methode der Wahl ist füra lle ungelçsten Strukturen von submikrometergroßen Kristallen. Die Grçße der Kristalle ist uns hier wichtig als Kriterium fürd ie Elektronenbeugung.
Despite the great progress of ferroelectric gated field-effect
transistors (Fe-FETs) based on graphene and other 2D materials, a
device model that accurately describes the hysteretic transfer characteristics
and provides guidelines on performance enhancement of the Fe-FET is
still lacking. Here, we present an experimentally validated analytical
model that couples charge displacement of the ferroelectric layer
with the charge transport in the graphene layer. The model describes
hysteretic transfer characteristics of the Fe-FETs with good accuracy
and predicts that the on/off ratio of the graphene Fe-FET is determined
by Dirac bias and the charge carrier mobility. The model predicts
the unsuitability of an ideal graphene layer for memory application
and outlines the conditions to achieve the best memory performance
in graphene Fe-FETs. The model is generic and can be as well used
for Fe-FETs based on other 2D materials.
Controlled reduction of GO thin-films at room temperature with spatial resolution simply by application of a voltage, without the intentional use of electrolytes, has been demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.