To obtain mechanical tensile properties of materials it is customary to equip the specimen directly with a device to measure strain and Young’s modulus correctly and only within the measuring length defined by the standards. Whereas a variety of tools such as extensometers, strain gauges and optical systems are available for specimens on coupon level, no market-ready tools to measure strains of single fibres during single fibre tensile tests are available. Although there is a standard for single fibre testing, the procedures described there are only capable of measuring strains of the whole testing setup rather than the strain of the fibre. Without a direct strain measurement on the specimen, the compliance of the test rig itself influences the determination of the Young’s modulus.
This work aims to fill this gap by establishing an enhanced method to measure strains directly on the tested fibre and thus provide accurate values for Young’s modulus. It is demonstrated that by applying and then optically tracking fluorescing polymeric beads on single glass fibres, Young’s modulus is determined directly and with high repeatability, without a need to measure at different measuring lengths or compensating for the system compliance. Employing this method to glass fibres, a Young’s modulus of approximately 82.5 GPa was determined, which is in the range of values obtained by applying a conventional procedure. This enhanced measuring technology achieves high accuracy and repeatability while reducing scatter of the data. It was demonstrated that the fluorescing beads do not affect the fibre properties.
The term downcycling is often used anecdotally to describe imperfections in recycling. However, it is rarely defined. Here, we identify six meanings of the term downcycling as used in scientific articles and reports. These encompass the material quality of reprocessed materials, target applications, product value, alloying element losses, material systems, and additional primary production. In a proposal for harmonized and more specific terminology, we define downcycling as the phenomenon of quality reduction of materials reprocessed from waste relative to their original quality. We further identify that the reduced quality can express itself thermodynamically, functionally, and economically, covering all perspectives on downcycling. Dilution, contamination, reduced demand for recycled materials, and design-related issues can cause those downcycling effects. We anticipate that this more precise terminology can help quantify downcycling, keep materials in the loop longer, use materials more often and at higher quality, and therefore assist in reducing material-related environmental impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.