Barrett's esophagus represents an early stage in carcinogenesis leading to esophageal adenocarcinoma. Considerable evidence supports a major role for chronic inflammation and diverse chemokine pathways in the development of Barrett's esophagus and esophageal adenocarcinoma. Here we utilized an transgenic mouse model of Barrett's esophagus and esophageal adenocarcinoma and human patient imaging to analyze the importance of CXCR4-expressing cells during esophageal carcinogenesis. IL1β overexpression induces chronic esophageal inflammation and recapitulates the progression to Barrett's esophagus and esophageal adenocarcinoma. CXCR4 expression is increased in both epithelial and immune cells during disease progression in pL2-IL1β mice and also elevated in esophageal adenocarcinoma patient biopsy samples. Specific recruitment of CXCR4-positive (CXCR4) immune cells correlated with dysplasia progression, suggesting that this immune population may be a key contributor to esophageal carcinogenesis. Similarly, with progression to dysplasia, there were increased numbers of CXCR4 columnar epithelial cells at the squamocolumnar junction (SCJ). These findings were supported by stronger CXCR4-related signal intensity in fluorescence imaging and autoradiography with advanced dysplasia. Pilot CXCR4-directed PET/CT imaging studies in patients with esophageal cancer demonstrate the potential utility of CXCR4 imaging for the diagnosis and staging of esophageal cancer. In conclusion, the recruitment of CXCR4 immune cells and expansion of CXCR4 epithelial cells in esophageal dysplasia and cancer highlight the potential of CXCR4 as a biomarker and molecular target for diagnostic imaging of the tumor microenvironment in esophageal adenocarcinoma. .
Chronic inflammation induces Barrett Esophagus (BE) which can advance to esophageal adenocarcinoma (EAC). Elevated levels of IL-1b, IL-6, and IL-8 together with activated NF-kB, have been identified as important mediators of tumorigenesis. The inflammatory milieu apart from cancer cells and infiltrating immune cells, contains myofibroblasts (MF) that express aSMA and Vimentin. As we observed that increased NF-kB activation and inflammation correlates with increased MF recruitment and an accelerated phenotype we here analyze the role of NF-kB in MF during esophageal carcinogenesis in our L2-IL-1B mouse model. To analyze the effect of NF-kB signaling in MFs, we crossed L2-IL-1B mice to tamoxifen inducible Vim-Cre (Vim-CreTm) mice and floxed RelA (p65fl/fl) mice to specifically eliminate NF-kB signaling in MF (IL-1b.Vim-CreTm.p65fl/fl). The interaction of epithelial cells and stromal cells was further analyzed in mouse BE organoids and patient-derived human organoids. Histological scoring of IL-1b.Vim-CreTm.p65fl/fl mice showed a significantly attenuated phenotype compared to L2-IL-1B mice, with mild inflammation, decreased metaplasia and no dysplasia. This correlated with decreased proliferation and increased differentiation in cardia tissue of IL-1b.Vim-CreTm.p65fl/fl compared to L2-IL-1B mice. Distinct changes of cytokines and chemokines within the local microenvironment in IL-1b.Vim-CreTm.p65fl/fl mice reflected the histopathological abrogated phenotype. Co-cultured NF-kB inhibitor treated MF with mouse BE organoids demonstrated NF-kB dependent growth and migration. MF are essential to form an inflammatory and pro-carcinogenic microenvironment and NF-kB signaling in stromal cells emerges as an important driver of esophageal carcinogenesis. Our data suggest anti-inflammatory approaches as preventive strategies during surveillance of BE patients.
Barrett´s Esophagus (BE) is the main known precursor condition of Esophageal Adenocarcinoma (EAC). BE is defined by the presence of metaplasia above the normal squamous columnar junction and has mainly been attributed to gastroesophageal reflux disease (GERD) and chronic reflux esophagitis. Thus, the rising incidence of EAC in the Western world is likely mediated by chronic esophageal inflammation, secondary to GERD in combination with environmental risk factors such as a Western diet and obesity. However, (at present) risk prediction tools and endoscopic surveillance have shown limited effectiveness. Chemoprevention as an adjunctive approach remains an attractive option to reduce the incidence of neoplastic disease. Here, we investigate the feasibility of chemopreventive approaches in BE and EAC via inhibition of inflammatory signaling in a transgenic mouse model of BE and EAC (L2-IL1B mice), with accelerated tumor formation on a high fat diet (HFD). L2-IL1B mice were treated with the IL-1 receptor antagonist Anakinra and the nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin or Sulindac. Interleukin-1b antagonism reduced tumor progression in L2-IL1B mice with or without a HFD, while both NSAIDs were effective chemoprevention agents in the accelerated HFD fed L2-IL1B mouse model. Sulindac treatment also resulted in a marked change in the immune profile of L2-IL-1B mice. In summary, anti-inflammatory treatment of HFD-treated L2-IL1B mice acted protectively on disease progression. These results from a mouse model of BE support results from clinical trials that suggest that anti-inflammatory medication may be effective in the chemoprevention of EAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.