Exercise-induced oxidative stress is important for the muscular adaptation to training but may also cause muscle damage. We hypothesized that prolonged exercise would increase mitochondrial production of reactive oxygen species (ROS) measured in vitro and that this correlates with oxidative damage. Eight male athletes (24-32 yr) performed ultraendurance exercise (kayaking/running/cycling) with an average work intensity of 55% V(O(2peak)) for 24 h. Muscle biopsies were taken from vastus lateralis before exercise, immediately after exercise, and after 28 h of recovery. The production of H(2)O(2) was measured fluorometrically in isolated mitochondria with the Amplex red and peroxidase system. Succinate-supported mitochondrial H(2)O(2) production was significantly increased after exercise (73% higher, P = 0.025) but restored to the initial level at recovery. Plasma level of free fatty acids (FFA) increased fourfold and exceeded 1.2 mmol/l during the last 6 h of exercise. Plasma FFA at the end of exercise was significantly correlated to mitochondrial ROS production (r = 0.74, P < 0.05). Mitochondrial content of 4-hydroxy-nonenal-adducts (a marker of oxidative damage) was increased only after recovery and was not correlated with mitochondrial ROS production. Total thiol group level and glutathione peroxidase activity were elevated after recovery. In conclusion, ultraendurance exercise increases ROS production in isolated mitochondria, but this is reversed after 28 h recovery. Mitochondrial ROS production was not correlated with oxidative damage of mitochondrial proteins, which was increased at recovery but not immediately after exercise.
In modern sprint cross-country skiing, strength and maximal speed are major determinants of performance. The aims of this study were to ascertain the anthropometric characteristics of world-class sprint skiers and to evaluate whether a specific body composition and/or body dimension characterizes a successful sprint skier. Our hypothesis was that body height and lean body mass are related to peak speed in double poling and diagonal stride. Fourteen male national and international elite skiers performed two peak speed tests in double poling and diagonal stride roller skiing on a treadmill and were analysed using dual-energy X-ray absorptiometry to determine body composition and body dimensions. Relative pole length was positively correlated with both techniques (double poling: r = 0.77, P < 0.01; diagonal stride: r = 0.60, P < 0.05) and was the only variable that was part of the multiple regression model for both double poling and diagonal stride peak speed. Body height was not correlated with any technique, whereas lean trunk mass (r = 0.75, P < 0.01), body mass index (r = 0.66, P < 0.01), total lean mass (r = 0.69, P < 0.01), and body mass (r = 0.57, P < 0.05) were positively related to double poling peak speed. Total lean mass (absolute: r = 0.58, P < 0.05; relative: r = 0.76, P < 0.001) and relative lean mass of the trunk, arms (both r = 0.72, P < 0.01), and legs (r = 0.54, P < 0.05) were positively related to diagonal stride peak speed. In conclusion, skiers should aim to achieve a body composition with a high percentage of lean mass and low fat mass. A focus on trunk mass through increased muscle mass appears to be important, especially for double poling. The use of longer poles (percent body height) seems to be advantageous for both double poling and diagonal stride peak speed, whereas body dimensions do not appear to be a predictive factor.
Energy turnover was assessed in two conditions of mixed ultra-endurance exercise. In Study 1, energy expenditure and intake were measured in nine males in a laboratory over 24 h. In Study 2, energy expenditure was assessed in six males during an 800-km Adventure race (mean race time 152.5 h). Individual correlations between heart rate and oxygen uptake (VO(2)) were established during pre-tests when kayaking, cycling, and running. During exercise, energy expenditure was estimated from continuous heart rate recordings. Heart rate and VO(2) were measured regularly during fixed cycling work rates to correct energy expenditure for drift in oxygen pulse. Mean energy expenditure was 18,050 +/- 2,390 kcal (750 +/- 100 kcal h(-1)) and 80,000 +/- 18,000 kcal (500 +/- 100 kcal h(-1)) in Study 1 and Study 2 respectively, which is higher than previously reported. Energy intake in Study 1 was 8,450 +/- 1,160 kcal, resulting in an energy deficit of 9,590 +/- 770 kcal. Body mass decreased in Study 1 (-2.3 +/- 0.8 kg) but was unchanged in Study 2. Fat mass decreased in Study 2 (-2.3 +/- 1.5 kg). In Study 1, muscle glycogen content decreased by only 60%. Adventure racing requires a high energy expenditure, with large inter-individual variation. A large energy deficit is caused by inadequate energy intake, possibly due to suppressed appetite and gastrointestinal problems. The oxygen pulse, comparing start to 12 h of exercise and beyond, increased by 10% and 5% in Study 1 and Study 2 respectively. Hence, estimations of energy expenditure from heart rate recordings should be corrected according to this drift.
The hypothesis that ultraendurance exercise influences muscle mitochondrial function has been investigated. Athletes in ultraendurance performance performed running, kayaking, and cycling at 60% of their peak O(2) consumption for 24 h. Muscle biopsies were taken preexercise (Pre-Ex), postexercise (Post-Ex), and after 28 h of recovery (Rec). Respiration was analyzed in isolated mitochondria during state 3 (coupled to ATP synthesis) and state 4 (noncoupled respiration), with fatty acids alone [palmitoyl carnitine (PC)] or together with pyruvate (Pyr). Electron transport chain activity was measured with NADH in permeabilized mitochondria. State 3 respiration with PC increased Post-Ex by 39 and 41% (P < 0.05) when related to mitochondrial protein and to electron transport chain activity, respectively. State 3 respiration with Pyr was not changed (P > 0.05). State 4 respiration with PC increased Post-Ex but was lower than Pre-Ex at Rec (P < 0.05 vs. Pre-Ex). Mitochondrial efficiency [amount of added ADP divided by oxygen consumed during state 3 (P/O ratio)] decreased Post-Ex by 9 and 6% (P < 0.05) with PC and PC + Pyr, respectively. P/O ratio remained reduced at Rec. Muscle uncoupling protein 3, measured with Western blotting, was not changed Post-Ex but tended to decrease at Rec (P = 0.07 vs. Pre-Ex). In conclusion, extreme endurance exercise decreases mitochondrial efficiency. This will increase oxygen demand and may partly explain the observed elevation in whole body oxygen consumption during standardized exercise (+13%). The increased mitochondrial capacity for PC oxidation indicates plasticity in substrate oxidation at the mitochondrial level, which may be of advantage during prolonged exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.