The separation of lignin from the black liquor generated during alkaline pulping is reviewed in this article with an emphasis on chemistry. Based on published accounts, the precipitation of lignin from spent pulping liquor by addition of acids can be understood based on dissociation equilibria of weak acid groups, which affects the solubility behavior of lignin-related chemical species. Solubility issues also govern lignin separation technologies based on ultrafiltration membranes; reduction in membrane permeability is often affected by conditions leading to decreased solubility of lignin decomposition products and the presence of colloidal matter. Advances in understanding of such phenomena have potential to enable higher-value uses of black liquor components, including biorefinery options, alternative ways to recover the chemicals used to cook pulp, and debottlenecking of kraft recovery processes.
The separation of lignin from the black liquor generated during alkaline pulping is reviewed in this article with an emphasis on chemistry. Based on published accounts, the precipitation of lignin from spent pulping liquor by addition of acids can be understood based on dissociation equilibria of weak acid groups, which affects the solubility behavior of lignin-related chemical species. Solubility issues also govern lignin separation technologies based on ultrafiltration membranes; reduction in membrane permeability is often affected by conditions leading to decreased solubility of lignin decomposition products and the presence of colloidal matter. Advances in understanding of such phenomena have potential to enable higher-value uses of black liquor components, including biorefinery options, alternative ways to recover the chemicals used to cook pulp, and debottlenecking of kraft recovery processes.
Lignin is a sustainable raw material with a high potential for use in the production of renewable products. While the market for lignin is slowly growing, lignin recovery via acid precipitation during the kraft pulping process requires the addition of chemicals that will impact the chemical balance of the pulp mill. This negatively affects both the environmental and business operations. Utilizing existing process streams as a source of chemicals will allow the mill to close the chemical loop and reduce emissions, which will have positive environmental impacts. This study investigated the internal production of sulphuric acid (H2SO4) and carbon dioxide (CO2) for use in lignin separation (also called extraction) at a Swedish kraft pulp mill. The process simulation tool CHEMCAD was used to model and analyze the wet gas H2SO4 (WSA) process to produce H2SO4. The chemical absorption process using monoethanolamine (MEA) to capturing CO2 was also analyzed. The utilization of the sulphur-containing gases to produce H2SO4 can generate an amount that corresponds to a significant lignin extraction rate. The CO2 available in the flue gases from a mill well exceeds the amount required for lignin extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.