Since their introduction in 2012, Local Climate Zones (LCZs) emerged as a new standard for characterizing urban landscapes, providing a holistic classification approach that takes into account micro-scale land-cover and associated physical properties. In 2015, as part of the community-based World Urban Database and Access Portal Tools (WUDAPT) project, a protocol was developed that enables the mapping of cities into LCZs, using freely available data and software packages, yet performed on local computing facilities. The LCZ Generator described here further simplifies this process, providing an online platform that maps a city of interest into LCZs, solely expecting a valid training area file and some metadata as input. The web application (available at https://lcz-generator.rub.de) integrates the state-of-the-art of LCZ mapping, and simultaneously provides an automated accuracy assessment, training data derivatives, and a novel approach to identify suspicious training areas. As this contribution explains all front- and back-end procedures, databases, and underlying datasets in detail, it serves as the primary “User Guide” for this web application. We anticipate this development will significantly ease the workflow of researchers and practitioners interested in using the LCZ framework for a variety of urban-induced human and environmental impacts. In addition, this development will ease the accessibility and dissemination of maps and their metadata.
Abstract. There is a scientific consensus on the need for spatially detailed information on urban landscapes at a global scale. These data can support a range of environmental services, since cities are places of intense resource consumption and waste generation and of concentrated infrastructure and human settlement exposed to multiple hazards of natural and anthropogenic origin. In the face of climate change, urban data are also required to explore future urbanization pathways and urban design strategies in order to lock in long-term resilience and sustainability, protecting cities from future decisions that could undermine their adaptability and mitigation role. To serve this purpose, we present a 100 m-resolution global map of local climate zones (LCZs), a universal urban typology that can distinguish urban areas on a holistic basis, accounting for the typical combination of micro-scale land covers and associated physical properties. The global LCZ map, composed of 10 built and 7 natural land cover types, is generated by feeding an unprecedented number of labelled training areas and earth observation images into lightweight random forest models. Its quality is assessed using a bootstrap cross-validation alongside a thematic benchmark for 150 selected functional urban areas using independent global and open-source data on surface cover, surface imperviousness, building height, and anthropogenic heat. As each LCZ type is associated with generic numerical descriptions of key urban canopy parameters that regulate atmospheric responses to urbanization, the availability of this globally consistent and climate-relevant urban description is an important prerequisite for supporting model development and creating evidence-based climate-sensitive urban planning policies. This dataset can be downloaded from https://doi.org/10.5281/zenodo.6364594 (Demuzere et al., 2022a).
In recent years, the collection and utilisation of crowdsourced data has gained attention in atmospheric sciences and citizen weather stations (CWS), i.e., privately-owned weather stations whose owners share their data publicly via the internet, have become increasingly popular. This is particularly the case for cities, where traditional measurement networks are sparse. Rigorous quality control (QC) of CWS data is essential prior to any application. In this study, we present the QC package “CrowdQC+,” which identifies and removes faulty air-temperature (ta) data from crowdsourced CWS data sets, i.e., data from several tens to thousands of CWS. The package is a further development of the existing package “CrowdQC.” While QC levels and functionalities of the predecessor are kept, CrowdQC+ extends it to increase QC performance, enhance applicability, and increase user-friendliness. Firstly, two new QC levels are introduced. The first implements a spatial QC that mainly addresses radiation errors, the second a temporal correction of the data regarding sensor-response time. Secondly, new functionalities aim at making the package more flexible to apply to data sets of different lengths and sizes, enabling also near-real time application. Thirdly, additional helper functions increase user-friendliness of the package. As its predecessor, CrowdQC+ does not require reference meteorological data. The performance of the new package is tested with two 1-year data sets of CWS data from hundreds of “Netatmo” CWS in the cities of Amsterdam, Netherlands, and Toulouse, France. Quality-controlled data are compared with data from networks of professionally-operated weather stations (PRWS). Results show that the new package effectively removes faulty data from both data sets, leading to lower deviations between CWS and PRWS compared to its predecessor. It is further shown that CrowdQC+ leads to robust results for CWS networks of different sizes/densities. Further development of the package could include testing the suitability of CrowdQC+ for other variables than ta, such as air pressure or specific humidity, testing it on data sets from other background climates such as tropical or desert cities, and to incorporate added filter functionalities for further improvement. Overall, CrowdQC+ could lead the way to utilise CWS data in world-wide urban climate applications.
Abstract. There is a scientific consensus on the need for spatially detailed information on urban landscapes at a global scale. This data can support a range of environmental services, as cities are acknowledged as places of intense resource consumption and waste generation and foci of population and infrastructure that are exposed to multiple hazards of natural and anthropogenic origin. In the face of climate change, urban data is also required to explore future urbanisation pathways and urban design strategies, in order to lock in long-term resilience and sustainability, protecting cities from future decisions that could undermine their adaptability. To serve this purpose, we present a 100 m resolution global map of Local Climate Zones (LCZs), an universal urban typology that can distinguish urban areas on a holistic basis, accounting for the typical combination of micro-scale land-covers and associated physical properties. The global LCZ map, composed of 10 built and 7 natural land cover types, is generated by feeding an unprecedented amount of labelled training areas and earth observation imagery into lightweight random forest models. Its quality is assessed using a bootstrap cross validation alongside a thematic benchmark for 150 selected functional urban areas using independent global and open-source data on surface cover, surface imperviousness, building height, and anthropogenic heat. As each LCZ type is associated with generic numerical descriptions of key urban canopy parameters that regulate atmospheric responses to urbanisation, the availability of this globally consistent and climate-relevant urban description is an important prerequisite for supporting model development and creating evidence-based climate-sensitive urban planning policies. This dataset can be downloaded from http://doi.org/10.5281/zenodo.6364594 (Demuzere et al., 2022a).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.