Optical flow estimation is crucial for autonomous navigation and localization of unmanned aerial vehicles (UAV). On micro and nano UAVs, real-time calculation of the optical flow is run on low power and resource-constrained microcontroller units (MCUs). Thus, lightweight algorithms for optical flow have been proposed targeting real-time execution on traditional singlecore MCUs. This paper introduces an efficient parallelization strategy for optical flow computation targeting new-generation multicore low power RISC-V based microcontroller units. Our approach enables higher frame rates at lower clock speeds. It has been implemented and evaluated on the eight-core cluster of a commercial octa-core MCU (GAP8) reaching a parallelization speedup factor of 7.21 allowing for a frame rate of 500 frames per second when running on a 50 MHz clock frequency. The proposed parallel algorithm significantly boosts the camera frame rate on micro unmanned aerial vehicles, which enables higher flight speeds: the maximum flight speed can be doubled, while using less than a third of the clock frequency of previous singlecore implementations.
Optical Flow (OF) is the movement pattern of pixels or edges that is caused in a visual scene by the relative motion between an agent and a scene. OF is used in a wide range of computer vision algorithms and robotics applications. While the calculation of OF is a resource-demanding task in terms of computational load and memory footprint, it needs to be executed at low latency, especially in robotics applications. Therefore, OF estimation is today performed on powerful CPUs or GPUs to satisfy the stringent requirements in terms of execution speed for control and actuation. On-sensor hardware acceleration is a promising approach to enable low latency OF calculations and fast execution even on resource-constrained devices such as nano drones and AR/VR glasses and headsets. This paper analyzes the achievable accuracy, frame rate, and power consumption when using a novel optical flow sensor consisting of a global shutter camera with an Application Specific Integrated Circuit (ASIC) for optical flow computation. The paper characterizes the optical flow sensor in high frame-rate, low-latency settings, with a frame rate of up to 88 fps at the full resolution of 1124 by 1364 pixels and up to 240 fps at a reduced camera resolution of 280 by 336, for both classical camera images and optical flow data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.