We describe two visual field maps, lateral occipital areas 1 (LO1) and 2 (LO2), in the human lateral occipital cortex between the dorsal part of visual area V3 and visual area V5/MTϩ. Each map contained a topographic representation of the contralateral visual hemifield. The eccentricity representations were shared with V1/V2/V3. The polar angle representation in LO1 extended from the lower vertical meridian (at the boundary with dorsal V3) through the horizontal to the upper vertical meridian (at the boundary with LO2). The polar angle representation in LO2 was the mirror-reversal of that in LO1. LO1 and LO2 overlapped with the posterior part of the object-selective lateral occipital complex and the kinetic occipital region (KO). The retinotopy and functional properties of LO1 and LO2 suggest that they correspond to two new human visual areas, which lack exact homologues in macaque visual cortex. The topography, stimulus selectivity, and anatomical location of LO1 and LO2 indicate that they integrate shape information from multiple visual submodalities in retinotopic coordinates.
Transforming growth factor-beta (TGFbeta) regulates the activation state of the endothelium via two opposing type I receptor/Smad pathways. Activin receptor-like kinase-1 (ALK1) induces Smad1/5 phosphorylation, leading to an increase in endothelial cell proliferation and migration, while ALK5 promotes Smad2/3 activation and inhibits both processes. Here, we report that ALK5 is important for TGFbeta/ALK1 signaling; endothelial cells lacking ALK5 are deficient in TGFbeta/ALK1-induced responses. More specifically, we show that ALK5 mediates a TGFbeta-dependent recruitment of ALK1 into a TGFbeta receptor complex and that the ALK5 kinase activity is required for optimal ALK1 activation. TGFbeta type II receptor is also required for ALK1 activation by TGFbeta. Interestingly, ALK1 not only induces a biological response opposite to that of ALK5 but also directly antagonizes ALK5/Smad signaling.
The primary motor area (M1) of mammals has long been considered to be structurally and functionally homogeneous. This area corresponds to Brodmann's cytoarchitectural area 4. A few reports showing that arm and hand are doubly represented in M1 of macaque monkeys and perhaps man, and that each subarea has separate connections from somatosensory areas, have, with a few exceptions, gone largely unnoticed. Here we show that area 4 in man can be subdivided into areas '4 anterior' (4a) and '4 posterior' (4p) on the basis of both quantitative cytoarchitecture and quantitative distributions of transmitter-binding sites. We also show by positron emission tomography that two representations of the fingers exist, one in area 4a and one in area 4p. Roughness discrimination activated area 4p significantly more than a control condition of self-generated movements. We therefore suggest that the primary motor area is subdivided on the basis of anatomy, neurochemistry and function.
Deletion of the transforming growth factor beta1 (TGF-beta1) gene in mice has previously suggested that it regulates both hematopoiesis and angiogenesis. To define the function of TGF-beta more precisely, we inactivated the TGF-beta type I receptor (TbetaRI) gene by gene targeting. Mice lacking TbetaRI die at midgestation, exhibiting severe defects in vascular development of the yolk sac and placenta, and an absence of circulating red blood cells. However, despite obvious anemia in the TbetaRI(-/-) yolk sacs, clonogenic assays on yolk sac-derived hematopoietic precursors in vitro revealed that TbetaRI(-/-) mice exhibit normal hematopoietic potential compared with wild-type and heterozygous siblings. Endothelial cells derived from TbetaRI-deficient embryos show enhanced cell proliferation, improper migratory behavior and impaired fibronectin production in vitro, defects that are associated with the vascular defects seen in vivo. We thus demonstrate here that, while TbetaRI is crucial for the function of TGF-beta during vascular development and can not be compensated for by the activin receptor-like kinase-1 (ALK-1), functional hematopoiesis and development of hematopoietic progenitors is not dependent on TGF-beta signaling via TbetaRI.
It has been known for over 45 years that electrical stimulation of the midbrain reticular formation and of the thalamic intralaminar nuclei of the brain alerts animals. However, lesions of these sectors fail to impair arousal and vigilance in some cases, making the role of the ascending activating reticular system controversial. Here, a positron emission tomographic study showed activation of the midbrain reticular formation and of thalamic intralaminar nuclei when human participants went from a relaxed awake state to an attention-demanding reaction-time task. These results confirm the role of these areas of the brain and brainstem in arousal and vigilance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.