The importance of power in society is indisputable. Virtually all economic activities depend on electricity. The electric power systems are complex, and move studies in different areas are motivated to make them more efficient and solve their operational problems. The smart grids emerged from this approach and aimed to improve the current systems and integrate electric power using alternative and renewable sources. Restoration techniques of these networks are being developed to reduce the impacts caused by the usual power supply interruptions due to failures in the distribution networks. This paper presents the development and evaluation of the performance of a multi-objective version of the Bacterial Foraging Optimization Algorithm for finding the minor handling switches that maximize the number of buses served, keeping the configuration radial system and within the limits of current in the conductors and bus voltage. An electrical system model was created, and routines were implemented for the network verification, which was used as a function of the Multi-Objective Bacterial Foraging Optimization Hybrid Algorithm. The proposed method has been applied in two distribution systems with 70 buses and 201 buses, respectively, and the algorithm’s effectiveness to solve the restoration problem is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.