Traditional farming systems in Sub-Saharan Africa depend primarily on mining soil nutrients. The African green revolution aims to intensify agriculture through the dissemination of integrated soil fertility management (ISFM). This paper develops a robust and operational definition of ISFM based on detailed knowledge of African farming systems and their inherent variability and of the optimal use of nutrients. The authors define ISFM as a set of soil fertility management practices that necessarily include the use of fertilizer, organic inputs and improved germplasm, combined with the knowledge on how to adapt these practices to local conditions, aimed at maximizing agronomic use efficiency of the applied nutrients and improving crop productivity. All inputs need to be managed in accordance with sound agronomic principles. The integration of ISFM practices into farming systems is illustrated with the dual-purpose grain legume–maize rotations in the savannas and fertilizer micro-dosing in the Sahel. Finally, the dissemination of ISFM practices is discussed.
-The negative effects of soil fertility depletion on food security, especially among smallholder farmers in Africa, is of economic importance, and may be worsened by climate change and rising global fertiliser prices. Substantial efforts and investment have gone into development of alternative soil fertility management options. These include vigorous research and development of N-fixing plants or "fertiliser trees", that has been on-going in the last two decades in East and Southern Africa. In this paper, we review several studies conducted both on-station and on-farm and synthesise the results in terms of improvements in soil physical, chemical and biological properties, and crop yield in response to fertiliser trees. Our major findings are that (1) fertiliser trees add more than 60 kg N ha −1 per year through biological nitrogen fixation (BNF); (2) nutrient contributions from fertiliser tree biomass can reduce the requirement for mineral N fertiliser by 75%, translating to huge savings on mineral fertilisers; (3) fertiliser trees were also shown to substantially increase crop yield. A meta-analysis has further provided conclusive evidence that with good management, fertiliser trees can double maize yields compared with local farmer practices of maize cultivation without addition of external fertilisation. (4) Financial analyses showed that fertiliser tree systems are profitable and also have higher net returns than the farmers' de facto practice, i.e. continuous maize cropping without fertiliser. We conclude that widespread adoption and scaling up of fertiliser trees can reduce the amount of mineral fertiliser needed, maintain the soil ecosystem, and positively impact on the livelihoods of farm households in southern Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.