Titanium and titanium alloys such as Ti-6Al-4V are generally considered as difficult-to-machine materials. This is mainly due to their high chemical reactivity, poor thermal conductivity, and high strength, which is maintained at elevated temperatures. As a result, the cutting tool is exposed to rather extreme contact conditions resulting in plastic deformation and wear. In the present work, the mechanisms behind the crater and flank wear of uncoated cemented carbide inserts in the turning of Ti6Al4V are characterized using high-resolution scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and high-resolution Auger electron spectroscopy (AES).The results show that, for combinations of low cutting speeds and feeds, crater and flank wear were found to be controlled by an attrition wear mechanism, while for combinations of medium to high cutting speeds and feeds, a diffusion wear mechanism was found to control the wear. For the latter combinations, high-resolution SEM and AES analysis reveal the formation of an approximately 100 nm thick carbon-depleted tungsten carbide (WC)-layer at the cemented carbide/Ti6Al4V interface due to the diffusion of carbon into the adhered build-up layers of work material on the rake and flank surfaces.
Using Ti6Al4V as a work material, a methodology to systematically investigate the diffusion degradation of cemented carbide during machining is proposed. The methodology includes surface characterization of as-tested worn inserts, wet etched worn inserts, metallographic cross-sectioned worn inserts as well as the back-side of the produced chips. Characterization techniques used include scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Auger electron spectroscopy (AES) and time of flight secondary ion mass spectroscopy (ToF-SIMS). The results show that the characterization of wet etched worn inserts gives quick and useful information regarding the diffusion degradation of cemented carbide, in the present work the formation of a fine crystalline W layer (carbon depleted WC layer) at the tool-work material interface. The present study also illuminates the potential of AES analysis when it comes to analyzing the degradation of cemented carbide in contact with the work material during machining. The high surface sensitivity in combination with high lateral resolution makes it possible to analyze the worn cemented carbide surface on a sub-µm level. Especially AES sputter depth profiling, resulting in detailed information of variations in chemical composition across interfaces, is a powerful tool when it comes to understanding diffusion wear. Finally, the present work illustrates the importance of analyzing not only the worn tool but also the produced chips. An accurate characterization of the back-side of the chips will give important information regarding the wear mechanisms taking place at the tool rake face–chip interface. Surface analysis techniques such as AES and ToF-SIMS are well suited for this type of surface characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.