Knowledge of the exact distribution of meiotic crossovers (COs) and gene conversions (GCs) is essential for understanding many aspects of population genetics and evolution, from haplotype structure and long-distance genetic linkage to the generation of new allelic variants of genes. To this end, we resequenced the four products of 13 meiotic tetrads along with 10 doubled haploids derived from Arabidopsis thaliana hybrids. GC detection through short reads has previously been confounded by genomic rearrangements. Rigid filtering for misaligned reads allowed GC identification at high accuracy and revealed an ∼80-kb transposition, which undergoes copy-number changes mediated by meiotic recombination. Non-crossover associated GCs were extremely rare most likely due to their short average length of ∼25–50 bp, which is significantly shorter than the length of CO-associated GCs. Overall, recombination preferentially targeted non-methylated nucleosome-free regions at gene promoters, which showed significant enrichment of two sequence motifs.DOI:
http://dx.doi.org/10.7554/eLife.01426.001
Mapping-by-sequencing combines genetic mapping with whole-genome sequencing in order to accelerate mutant identification. However, application of mapping-by-sequencing requires decisions on various practical settings on the experimental design that are not intuitively answered. Following an experimentally determined recombination landscape of Arabidopsis and next generation sequencing-specific biases, we simulated more than 400,000 mapping-by-sequencing experiments. This allowed us to evaluate a broad range of different types of experiments and to develop general rules for mapping-by-sequencing in Arabidopsis. Most importantly, this informs about the properties of different crossing scenarios, the number of recombinants and sequencing depth needed for successful mapping experiments.
All common genome-wide association (GWA) methods rely on population structure correction, to avoid false genotype-to-phenotype associations. However, population structure correction is a stringent penalization, which also impedes identification of real associations. Using recent statistical advances, we developed a new GWA method, called Quantitative Trait Cluster Association Test (QTCAT), enabling simultaneous multi-marker associations while considering correlations between markers. With this, QTCAT overcomes the need for population structure correction and also reflects the polygenic nature of complex traits better than single-marker methods. Using simulated data, we show that QTCAT clearly outperforms linear mixed model approaches. Moreover, using QTCAT to reanalyse public human, mouse and Arabidopsis GWA data revealed nearly all known and some previously undetected associations. Following up on the most significant novel association in the Arabidopsis data allowed us to identify a so far unknown component of root growth.
A major goal of today's biology is to understand the genetic basis of quantitative traits. This can be achieved by statistical methods that evaluate the association between molecular marker variation and phenotypic variation in different types of mapping populations. The objective of this work was to evaluate the statistical power of quantitative trait loci (QTL) detection of various multi-parental mating designs, as well as to assess the reasons for the observed differences. Our study was based on an empirical data of 20 Arabidopsis thaliana accessions, which have been selected to capture the maximum genetic diversity. The examined mating designs differed strongly with respect to the statistical power to detect QTL. We observed the highest power to detect QTL for the diallel cross with random mating design. The results of our study suggested that performing sibling mating within subpopulations of joint-linkage mapping populations has the potential to considerably increase the power for QTL detection. Our results, however, revealed that using designs in which more than two parental alleles segregate in each subpopulation increases the power even more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.