We consider the electroweak phase transition in the conformal extension of the standard model known as SU(2)cSM. Apart from the standard model particles, this model contains an additional scalar and a gauge field that are both charged under the hidden SU(2) X . This model generically exhibits a very strong phase transition that proceeds after a large amount of supercooling. We estimate the gravitational wave spectrum produced in this model and show that its amplitude and frequency fall within the observational window of LISA. We also discuss potential pitfalls and relevant points of improvement required to attain reliable estimates of the gravitational wave production in this -as well as in more generalclass of models. In order to improve perturbativity during the early stages of transition that ends with bubble nucleation, we solve a thermal gap equation in the scalar sector inspired by the 2PI effective action formalism.
In the quest for unification of the Standard Model with gravity, classical scale invariance can be utilized to dynamically generate the Planck mass MPl. However, the relation of Planck scale physics to the scale of electroweak symmetry breaking μH requires further explanation. In this paper, we propose a model that uses the spontaneous breaking of scale invariance in the scalar sector as a unified origin for dynamical generation of both scales. Using the Gildener-Weinberg approximation, only one scalar acquires a vacuum expectation value of υS ∼ (1016−17) GeV, thus radiatively generating $$ {M}_{\mathrm{P}1}\approx {\beta}_S^{1/2}{\upsilon}_S $$ M P 1 ≈ β S 1 / 2 υ S and μH via the neutrino option with right handed neutrino masses mN = yMυS ∼ 107 GeV. Consequently, active SM neutrinos are given a mass with the inclusion of a type-I seesaw mechanism. Furthermore, we adopt an unbroken Z2 symmetry and a Z2-odd set of right-handed Majorana neutrinos χ that do not take part in the neutrino option and are able to produce the correct dark matter relic abundance (dominantly) via inflaton decay. The model also describes cosmic inflation and the inflationary CMB observables are predicted to interpolate between those of R2 and linear chaotic inflationary model and are thus well within the strongest experimental constraints.
We study the implications of a combined analysis of cosmic standard candles and standard rulers on the viability of cosmological models beyond the cosmological concordance model ΛCDM. To this end, we employ well-established data in the form of the joint lightcurve analysis supernova compilation, baryon acoustic oscillations, and cosmic microwave background data on the one hand, and a recently proposed set of quasars as objects of known brightness on the other hand. The advantage of including the latter is that they extend the local distance measures to redshifts which have previously been out of reach and we investigate how this allows one to test cosmologies beyond ΛCDM. While there exist various studies on parametric extensions of ΛCDM, we present here a comparative study of both parametric and fundamental extensions of the standard cosmology. In order to keep the scope of this manuscript contained, we focus on two particular modifications: one is the consistent theory of two interacting spin-2 objects, so-called bigravity, and the other conformal gravity, a theory of gravity that has no knowledge of fundamental length scales. The former of the two constitutes a veritable extension of General Relativity, given that it adds to the metric tensor of gravity a second dynamical tensor field. The resulting dynamics have been proposed as a self-accelerating cosmology. Conformal gravity on the other hand is a much more drastic change of the underlying gravitational theory. Its ignorance towards fundamental length scales offers a completely different approach to the origin of late time acceleration. In this sense, both models offer -in one way or another --an explanation for the dark energy problem. We perform a combined cosmological fit which provides strong constraints on these extensions. We also briefly comment on the implications of the longstanding H 0 -tension.
We consider a generic model of quadratic gravity coupled to a single scalar and investigate the effects of gravitational degrees of freedom on inflationary parameters. We find that quantum corrections arising from the massive spin-2 ghost generate significant contributions to the effective inflationary potential and allow for a realization of the spontaneous breakdown of global scale invariance without the need for additional scalar fields. We compute inflationary parameters, compare the resulting predictions to well-known inflationary models, and find that they fit well within the Planck and BICEP/Keck collaboration's constraints on inflation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.