We use Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) data to reconstruct the plasma properties from differential emission measure (DEM) analysis for a previously studied long-lived, low-latitude coronal hole (CH) over its lifetime of ten solar rotations. We initially obtain a non-isothermal DEM distribution with a dominant component centered around 0.9 MK and a secondary smaller component at 1.5-2.0 MK. We find that deconvolving the data with the instrument point spread function (PSF) to account for long-range scattered light reduces the secondary hot component. Using the 2012 Venus transit and a 2013 lunar eclipse to test the efficiency of this deconvolution, significant amounts of residual stray light are found for the occulted areas. Accounting for this stray light in the error budget of the different AIA filters further reduces the secondary hot emission, yielding CH DEM distributions that are close to isothermal with the main contribution centered around 0.9 MK. Based on these DEMs, we analyze the evolution of the emission measure (EM), density, and averaged temperature during the CH's lifetime. We find that once the CH is clearly observed in EUV images, the bulk of the CH plasma reveals a quite constant state, i.e. temperature and density reveal no major changes, whereas the total CH area and the photospheric magnetic fine structure inside the CH show a distinct evolutionary pattern. These findings suggest that CH plasma properties are mostly "set" at the CH formation or/and that all CHs have similar plasma properties.
Context. The Spectrometer/Telescope for Imaging X-rays (STIX) is the hard X-ray instrument onboard Solar Orbiter designed to observe solar flares over a broad range of flare sizes. Aims. We report the first STIX observations of solar microflares recorded during the instrument commissioning phase in order to investigate the STIX performance at its detection limit. Methods. STIX uses hard X-ray imaging spectroscopy in the range between 4–150 keV to diagnose the hottest flare plasma and related nonthermal electrons. This first result paper focuses on the temporal and spectral evolution of STIX microflares occuring in the Active Region (AR) AR12765 in June 2020, and compares the STIX measurements with Earth-orbiting observatories such as the X-ray Sensor of the Geostationary Operational Environmental Satellite (GOES/XRS), the Atmospheric Imaging Assembly of the Solar Dynamics Observatory, and the X-ray Telescope of the Hinode mission. Results. For the observed microflares of the GOES A and B class, the STIX peak time at lowest energies is located in the impulsive phase of the flares, well before the GOES peak time. Such a behavior can either be explained by the higher sensitivity of STIX to higher temperatures compared to GOES, or due to the existence of a nonthermal component reaching down to low energies. The interpretation is inconclusive due to limited counting statistics for all but the largest flare in our sample. For this largest flare, the low-energy peak time is clearly due to thermal emission, and the nonthermal component seen at higher energies occurs even earlier. This suggests that the classic thermal explanation might also be favored for the majority of the smaller flares. In combination with EUV and soft X-ray observations, STIX corroborates earlier findings that an isothermal assumption is of limited validity. Future diagnostic efforts should focus on multi-wavelength studies to derive differential emission measure distributions over a wide range of temperatures to accurately describe the energetics of solar flares. Conclusions. Commissioning observations confirm that STIX is working as designed. As a rule of thumb, STIX detects flares as small as the GOES A class. For flares above the GOES B class, detailed spectral and imaging analyses can be performed.
Coronal holes are large-scale structures in the solar atmosphere that feature a reduced temperature and density in comparison to the surrounding quiet Sun and are usually associated with open magnetic fields. We perform a differential emission measure analysis on the 707 non-polar coronal holes in the Collection of Analysis Tools for Coronal Holes (CATCH) catalog to derive and statistically analyze their plasma properties (i.e. temperature, electron density, and emission measure). We use intensity filtergrams of the six coronal EUV filters from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, which cover a temperature range from $\approx10^{5.5}$ ≈ 10 5.5 to $10^{7.5}~\mbox{K}$ 10 7.5 K . Correcting the data for stray and scattered light, we find that all coronal holes have very similar plasma properties with an average temperature of $0.94 \pm0.18~\mbox{MK}$ 0.94 ± 0.18 MK , a mean electron density of $(2.4 \pm0.7) \times10^{8}~\mbox{cm}^{-3}$ ( 2.4 ± 0.7 ) × 10 8 cm − 3 , and a mean emission measure of $(2.8 \pm1.6) \times10^{26}~\mbox{cm}^{-5}$ ( 2.8 ± 1.6 ) × 10 26 cm − 5 . The temperature distribution within the coronal holes was found to be largely uniform, whereas the electron density shows a 30 to 40% linear decrease from the boundary towards the inside of the coronal hole. At distances greater than 20″ ($\approx15~\mbox{Mm}$ ≈ 15 Mm ) from the nearest coronal hole boundary, the density also becomes statistically uniform. The coronal hole temperature may show a weak solar-cycle dependency, but no statistically significant correlation of plasma properties with solar-cycle variations could be determined throughout the observed period between 2010 and 2019.
Context. During its commissioning phase in 2020, the Spectrometer/Telescope for Imaging X-rays (STIX) on board the Solar Orbiter spacecraft observed 69 microflares. The two most significant events from this set (of GOES class B2 and B6) were observed on-disk from the spacecraft as well as from Earth and analysed in terms of the spatial, temporal, and spectral characteristics. Aims. We complement the observations from the STIX instrument with EUV imagery from SDO/AIA and GOES soft X-ray data by adding imaging and plasma diagnostics over different temperature ranges for a detailed microflare case study that is focussed on energy release and transport. Methods. We used data from the GOES for SXR plasma diagnostics and SDO/AIA for carrying out high-cadence EUV imaging and reconstruction of differential emission measure (DEM) maps of the thermal flare plasma. The reconstructed DEM profiles were used to study the temporal evolution of thermal flare plasma in the kernels and loops independently. We derived the time evolution of the flare plasma parameters (EM, T) and thermal energy from STIX, GOES, and AIA observations. In particular, we studied the STIX spectra to determine the nonthermal emission from accelerated electrons. Results. A spectral fitting of the STIX data shows clear nonthermal emission for both microflares studied here. For both events, the plasma temperature and EM derived from STIX and GOES as well as the reconstructed DEM maps differ in absolute values and timing, with AIA (which is sensitive to lower plasma temperatures) lagging behind. The deduced plasma parameters from either method roughly agree with the values in the literature for microflares as do the nonthermal fit parameters from STIX. This finding is corroborated by the Neupert effect exhibited between the time derivative of the GOES SXR emission and the STIX HXR profiles. For the B6 event, for which such an analysis was possible, the non-thermal energy deduced from STIX roughly coincides with the lower estimates of the thermal energy requirement deduced from the SXR and EUV emissions. Conclusions. The observed Neupert effects and impulsive and gradual phases indicate that both events covered in this study are consistent with the standard chromospheric evaporation flare scenario. For the B6 event on 7 June 2020, this interpretation is further supported by the temporal evolution seen in the DEM profiles of the flare ribbons and loops. For this event, we also find that accelerated electrons can roughly account for the required thermal energy. The 6 June 2020 event demonstrates that STIX can detect nonthermal emission for GOES class B2 events that is nonetheless smaller than the background rate level. We demonstrate for the first time how detailed multi-instrument studies of solar flares can be performed with STIX.
Context. One of the main science questions of the Solar Orbiter and Parker Solar Probe missions deals with understanding how electrons in the lower solar corona are accelerated and how they subsequently access interplanetary space. Aims. We aim to investigate the electron acceleration and energy release sites as well as the manner in which accelerated electrons access the interplanetary space in the case of the SOL2021-02-18T18:05 event, a GOES A8 class microflare associated with a coronal jet. Methods. This study takes advantage of three different vantage points, Solar Orbiter, STEREO-A, and Earth, with observations drawn from eight different instruments, ranging from radio to X-ray. Multi-wavelength timing analysis combined with UV/EUV imagery and X-ray spectroscopy by Solar Orbiter/STIX (Spectrometer/Telescope for Imaging X-rays) is used to investigate the origin of the observed emission during different flare phases. Results. The event under investigation satisfies the classical picture of the onset time of the acceleration of electrons coinciding with the jet and the radio type III bursts. This microflare features prominent hard X-ray (HXR) nonthermal emission down to at least 10 keV and a spectrum that is much harder than usual for a microflare with γ = 2.9 ± 0.3. From Earth’s vantage point, the microflare is seen near the limb, revealing the coronal energy release site above the flare loop in EUV, which, from STIX spectroscopic analysis, turns out to be hot (i.e., at roughly the same temperature of the flare). Moreover, this region is moving toward higher altitudes over time (∼30 km s−1). During the flare, the same region spatially coincides with the origin of the coronal jet. Three-dimensional (3D) stereoscopic reconstructions of the propagating jet highlight that the ejected plasma moves along a curved trajectory. Conclusions. Within the framework of the interchange reconnection model, we conclude that the energy release site observed above-the-loop corresponds to the electron acceleration site, corroborating that interchange reconnection is a viable candidate for particle acceleration in the low corona on field lines open to interplanetary space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.