We study consequences and applications of the folklore statement that every double complex over a field decomposes into so-called squares and zigzags. This result makes questions about the associated cohomology groups and spectral sequences easy to understand. We describe a notion of 'universal' quasi-isomorphism and the behaviour of the decomposition under tensor product and compute the Grothendieck ring of the category of bounded double complexes over a field with finite cohomologies up to such quasi-isomorphism (and some variants).Applying the theory to the double complexes of smooth complex valued forms on compact complex manifolds, we obtain a Poincaré duality for higher pages of the Frölicher spectral sequence, construct a functorial three-space decomposition of the middle cohomology, give an example of a map between compact complex manifolds which does not respect the Hodge filtration strictly, compute the Bott-Chern and Aeppli cohomology for Calabi-Eckmann manifolds, introduce new numerical bimeromorphic invariants, show that the non-Kählerness degrees are not bimeromorphic invariants in dimensions higher than three and that the ∂∂lemma and some related properties are bimeromorphic invariants if, and only if, they are stable under restriction to complex submanifolds.
We compute the double complex of smooth complex-valued differential forms on projective bundles over and blow-ups of compact complex manifolds up to a suitable notion of quasi-isomorphism. This simultaneously yields formulas for "all" cohomologies naturally associated with this complex (in particular, de Rham, Dolbeault, Bott-Chern and Aeppli). *
We study almost complex structures with lower bounds on the rank of the Nijenhuis tensor. Namely, we show that they satisfy an h-principle. As a consequence, all parallelizable manifolds and all manifolds of dimension 2n ≥ 10 (respectively ≥ 6) admit a almost complex structure whose Nijenhuis tensor has maximal rank everywhere (resp. is nowhere trivial). For closed 4-manifolds, the existence of such structures is characterized in terms of topological invariants. Moreover, we show that the Dolbeault cohomology of non-integrable almost complex structures is often infinite dimensional (even on compact manifolds).
For every positive integer r, we introduce two new cohomologies, that we call E r {E_{r}} -Bott–Chern and E r {E_{r}} -Aeppli, on compact complex manifolds. When r = 1 {r\kern-1.0pt=\kern-1.0pt1} , they coincide with the usual Bott–Chern and Aeppli cohomologies, but they are coarser, respectively finer, than these when r ≥ 2 {r\geq 2} . They provide analogues in the Bott–Chern–Aeppli context of the E r {E_{r}} -cohomologies featuring in the Frölicher spectral sequence of the manifold. We apply these new cohomologies in several ways to characterise the notion of page- ( r - 1 ) {(r-1)} - ∂ ∂ ¯ {\partial\bar{\partial}} -manifolds that we introduced very recently. We also prove analogues of the Serre duality for these higher-page Bott–Chern and Aeppli cohomologies and for the spaces featuring in the Frölicher spectral sequence. We obtain a further group of applications of our cohomologies to the study of Hermitian-symplectic and strongly Gauduchon metrics for which we show that they provide the natural cohomological framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.