For reliability predictions, gallium nitride transistors require accurate estimations of the peak operating temperatures within the device. This paper presents a new application of thermoreflectance-based temperature measurements performed on a gallium nitride high electron mobility transistor. The submicron spatial and nanosecond temporal resolutions of the measurement system enables for the first time, the dynamic temperature measurement of a transistor operating up to 5 MHz. The GaN transistor is first biased in class-A and excited with a 1 MHz AC signal to demonstrate the dynamic temperature measurement. The transistor is then incorporated in a 20-40 V DC/DC boost converter to measure the dynamic temperature distributions across the semiconductor die operating under real loading conditions at 1 and 5 MHz switching frequencies. This technique captures the temperature variations that occur during the switching of the transistor and the recorded peak temperatures are 7.4 C higher compared with conventional measurement and simulation approaches. Index Terms-Thermoreflectance measurement, boost converter, gallium nitride, power transistor.
We present for the first time a measurement system that is capable of directly detecting and identifying the physical location of an oscillation within RF and microwave power amplifiers. The method uses a combined external electrooptic, non-linear vector network analyzer, and vector load-pull measurement system, which allows the measurement of crossfrequency phase-coherent multi-harmonic vector electric fields above the transistor with an 8 µm spatial resolution and 20 MHz-40 GHz bandwidth. Raster scans above the amplifier allow the time-domain electric fields to be animated and superimposed on top of the amplifier image enabling immediate identification of any oscillations by direct inspection. The method is first demonstrated on a low power amplifier composed of two parallel 0.1-W pHEMT transistors that is intentionally designed to have an odd-mode oscillation. The applicability of the method is further demonstrated by measuring and animating in-package parametric odd-mode oscillations within a 260-W laterally diffused metal-oxide-semiconductor (LDMOS) transistor operating at 2.2 GHz under pulsed RF conditions with 10 µs pulses and 10% duty cycle. The measurement and identification technique is applicable to all semiconductor devices as the external electric field is non-invasively measured above the amplifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.