Serotonin (5-HT) shapes brain networks during development and modulates a wide spectrum of essential neuronal functions ranging from perception and cognitive appraisal to emotional responses in the mature brain. Deficits in 5-HT-moderated synaptic signaling fundamentally impact the pathophysiology and long-term outcome of neurodevelopmental disorders. Our understanding of how 5-HT-dependent modulation of circuit configuration influences social cognition and emotional learning has been enhanced by recent insight into the molecular and cellular mechanisms of synapse formation and plasticity. In this review, we discuss emerging concepts as to how defects in synaptic plasticity impact our biosocial brain and how recent findings regarding 5-HT's role in brain development and function provide insight into the cellular and physiological basis of neurodevelopmental disorders.
The relative contribution of the two tryptophan hydroxylase (TPH) isoforms, TPH1 and TPH2, to brain serotonergic system function is controversial. To investigate the respective role of TPH2 in neuron serotonin (5-HT) synthesis and the role of 5-HT in brain development, mice with a targeted disruption of Tph2 were generated. The preliminary results indicate that in Tph2 knockout mice raphe neurons are completely devoid of 5-HT, whereas no obvious alteration in morphology and fiber distribution are observed. The findings confirm the exclusive specificity of Tph2 in brain 5-HT synthesis and suggest that Tph2-synthesized 5-HT is not required for serotonergic neuron formation.
Brain serotonin (5-HT) is implicated in a wide range of functions from basic physiological mechanisms to complex behaviors, including neuropsychiatric conditions, as well as in developmental processes. Increasing evidence links 5-HT signaling alterations during development to emotional dysregulation and psychopathology in adult age. To further analyze the importance of brain 5-HT in somatic and brain development and function, and more specifically differentiation and specification of the serotonergic system itself, we generated a mouse model with brain-specific 5-HT deficiency resulting from a genetically driven constitutive inactivation of neuronal tryptophan hydroxylase-2 (Tph2). Tph2 inactivation (Tph2−/−) resulted in brain 5-HT deficiency leading to growth retardation and persistent leanness, whereas a sex- and age-dependent increase in body weight was observed in Tph2+/− mice. The conserved expression pattern of the 5-HT neuron-specific markers (except Tph2 and 5-HT) demonstrates that brain 5-HT synthesis is not a prerequisite for the proliferation, differentiation and survival of raphe neurons subjected to the developmental program of serotonergic specification. Furthermore, although these neurons are unable to synthesize 5-HT from the precursor tryptophan, they still display electrophysiological properties characteristic of 5-HT neurons. Moreover, 5-HT deficiency induces an up-regulation of 5-HT1A and 5-HT1B receptors across brain regions as well as a reduction of norepinephrine concentrations accompanied by a reduced number of noradrenergic neurons. Together, our results characterize developmental, neurochemical, neurobiological and electrophysiological consequences of brain-specific 5-HT deficiency, reveal a dual dose-dependent role of 5-HT in body weight regulation and show that differentiation of serotonergic neuron phenotype is independent from endogenous 5-HT synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.