In this paper we evaluate the performance of point and interval estimators based on the maximum likelihood(ML) method for the nonlinear simplex regression model. Inferences based on traditional maximum likelihood estimation have good asymptotic properties, but their performance in small samples may not be satisfactory. At out set we consider the maximum likelihood estimation for the parameters of the nonlinear simplex regression model, and so we introduced a bootstrap-based correction for such estimators of this model. We also develop the percentile and bootstrapt confidence intervals for those parameters as competitors to the traditional approximate confidence interval based on the asymptotic normality of the maximum likelihood estimators (MLEs). We then numerically evaluate the performance of these different methods for estimating the simplex regression model. The numerical evidence favors inference based on the bootstrap method, in special the bootstrapt interval, which was decisive in an application to real data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.