International audienceEvent-triggered control is a resource-aware sampling strategy that updates the control value only when a certain condition is satis ed, which denotes event instants. Such a technique allows to reduce the control computational cost and communications. In this paper, a quaternion-based feedback is developed for event-triggered attitude stabilization of a quadrotor mini-helicopter. The feedback is derived from the universal formula for eventtriggered stabilization of general nonlinear systems a ne in the control. The proposed feedback ensures the asymptotic stability to the desired attitude. Real-time experiments are carried out in order to show the convergence of the quadrotor states to the desired attitude as well as the robustness with respect to external disturbances. Results show that the proposed control can reduce by 80 % the communications of the embedded system without sacri cing performance of the whole system. To the best of the authors' knowledge, this is the rst time that a nonlinear event-triggered controller is experimentally applied to the attitude stabilization of an unmanned aircraft system
This paper proposes a simple solution for stabilization of a nano-hexacopter carrying a manipulator arm in order to increase the type of missions achievable by these types of systems. The manipulator arm is attached to the lower part of the hexacopter. The motion of the arm induces a change of the center of mass of the whole body, which induces torques which can produce the loss of stability. The present work deals with the stabilization of the whole system -that is hexacopter and arm -by means of a set of nonlinear control laws. First, an attitude control, stabilizes the hexacopter to a desired attitude taking into account the movement of the arm. Then, a suitable virtual control and the translational dynamics allow the formulation of a nonlinear controller, which drives the aerial vehicle to a desired position. Both controls consist in saturation functions. Experimental results validate the proposed control strategy and compares the results when the motion of the arm is taken into account or not.
The present work deals with consensus control for a multi-agent system composed by mini Vertical Takeoff and Landing (VTOL) rotorcrafts by means of a novel nonlinear event-based control law. First, the VTOL system modeling is presented using the quaternion parametrization to develop an integral sliding-mode control law for attitude stabilization of the aerial robots. Then, the vehicle position dynamics is expanded to the multi-agent case where a cuttingedge event-triggered sliding-mode control is synthesized to fulfill the collective consensus objective within a formation context. With its inherent robustness and reduced computational cost, the aforementioned control strategy guarantees closed-loop stability, while driving trajectories to the equilibrium in the presence of time-varying disturbances. Finally, for validation and assessment purposes of the overall consensus strategy, an extensive numerical simulation stage is conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.