We generalize earlier results on barrier options for puts and calls and log-normal stock processes to general local volatility models and convex contracts. We show that Γ ≥ 0, that Δ has a unique sign and that the option price is increasing with the volatility for convex contracts in the following cases: • If the risk-free rate of return dominates the dividend rate, then it holds for up-and-out options if the contract function is zero at the barrier and for down-and-in options in general. • If the risk-free rate of return is dominated by the dividend rate, then it holds for down-and-out options if the contract function is zero at the barrier and for up-and-in options in general. We apply our results to show that a hedger who misspecifies the volatility using a time-and-level dependent volatility will super-replicate any claim satisfying the above conditions if the misspecified volatility dominates the true (possibly stochastic) volatility almost surely.
The following paper is devoted to the study of the positivity set $U=\{\mathcal{L}\phi>0\}$ arising in parabolic obstacle problems. It is shown that $U$ is contained in the non-coincidence set with a positive distance between the boundaries uniformly in the spatial variable if the boundary of $U$ satisfies an interior $C^1$-Dini condition in the space variable and a Lipschitz condition in the time variable. We apply our results to American option pricing and we thus show that the positivity set is strictly contained in the continuation region, which means that the option should not be exercised in $U$ or on the boundary of $U$.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.