In optoelectronic devices such as solar cells and photodetectors, a portion of electron-hole pairs are generated as so-called hot carriers with an excess kinetic energy that is typically lost as heat. The long standing aim to harvest this excess energy to enhance device performance has proven to be very challenging, largely due to the extremely short-lived nature of hot carriers. Efforts thus focus on increasing the hot carrier relaxation time, and on tailoring heterostructures that allow for hot-carrier extraction on short time-and length-scales. Recently, semiconductor nanowires have emerged as a promising system to achieve these aims, because they offer unique opportunities for heterostructure engineering as well as for potentially modified phononic properties that can lead to increased relaxation times. In this review we assess the current state of theory and experiments relating to hot-carrier dynamics in nanowires, with a focus on hot-carrier photovoltaics. To provide a foundation, we begin with a brief overview of the fundamental processes involved in hot-carrier relaxation, and how these can be tailored and characterized in nanowires. We then analyze the advantages offered by nanowires as a system for hot-carrier devices and review the status of proof-of-principle experiments related to hot-carrier photovoltaics. To help interpret existing experiments on photocurrent extraction in nanowires we provide modeling based on non-equilibrium Green's functions. Finally, we identify open research questions that need to be answered in order to fully evaluate the potential nanowires offer towards achieving more efficient, hotcarrier based, optoelectronic devices.
The separation of hot carriers in semiconductors is of interest for applications such as thermovoltaic photodetection and third-generation photovoltaics. Semiconductor nanowires offer several potential advantages for effective hot-carrier separation such as: a high degree of control and flexibility in heterostructure-based band engineering, increased hot-carrier temperatures compared to bulk, and a geometry well suited for local control of light absorption. Indeed, InAs nanowires with a short InP energy barrier have been observed to produce electric power under global illumination, with an open-circuit voltage exceeding the Shockley-Queisser limit. To understand this behaviour in more detail, it is necessary to establish control over the precise location of electron-hole pair-generation in the nanowire. In this work we perform electron-beam induced current measurements with high spatial resolution, and demonstrate the role of the InP barrier in extracting energetic electrons.We interprete the results in terms of hot-carrier separation, and extract estimates of the hot carriers’ mean free path.
Using the excess energy of charge carriers excited above the band edge (hot carriers) could pave the way for optoelectronic devices, such as photovoltaics exceeding the Shockley–Queisser limit or ultrafast photodetectors. Semiconducting nanowires show promise as a platform for hot-carrier extraction. Proof of principle photovoltaic devices have already been realized based on InAs nanowires, using epitaxially defined InP segments as energy filters that selectively transmit hot electrons. However, it is not yet fully understood how charge-carrier separation, relaxation, and recombination depend on device design and on the location of optical excitation. Here, we introduce the use of an optical-beam-induced current (OBIC) characterization method, employing a laser beam focused close to the diffraction limit and a high precision piezo stage, to study the optoelectric performance of the nanowire device as a function of the position of excitation. The photocurrent response agrees well with modeling based on hot-electron extraction across the InP segment via diffusion. We demonstrate that the device is capable of producing power and estimate the spatial region within which significant hot-electron extraction can take place to be on the order of 300 nm away from the barrier. When comparing to other experiments on similar nanowires, we find good qualitative agreement, confirming the interpretation of the device function, while the extracted diffusion length of hot electrons varies. Careful control of the excitation and device parameters will be important to reach the potentially high device performance theoretically available in these systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.