Type 2 diabetes mellitus (T2DM) is increasing the prevalence worldwide at an alarming rate, becoming a serious public health problem that mainly affects developing countries. Functional food research is currently of great interest because it contributes to developing nutritional therapy strategies for T2DM prevention and treatment. Bioactive compounds identified in some plant foods contribute to human health by mechanisms of action that exert biological effects on metabolic pathways involved in the development of T2DM. Hence, vegetables with high bioactive compounds content may be a source of functional value for the control of T2DM. Cabbages varieties (Brassica oleracea var. capitata) such as green (GCB), white (WCB), and red (RCB) are foods consumed (raw or cooked) and cultivated in different regions of the world. Scientific evidence shows that cabbage has multi-target effects on glucose homeostatic regulation due to its high content of bioactive compounds. It has also been shown to decrease damage to organs affected by T2DM complications, such as the liver and kidney. Additionally, it could contribute as a preventive by attenuating problems underlying the development of T2DM as oxidative stress and obesity. This review highlights the functional properties of cabbage varieties involved in glucose regulation and the main mechanisms of the action exerted by their bioactive compounds. In conclusion, cabbage is a valuable food that can be employed as part of nutritional therapy or functional ingredient aimed at the prevention and treatment of T2DM.
Type 2 diabetes (T2D) is a chronic metabolic disease with a high impact on public health and social welfare. Hyperglycemia is a characteristic of T2D that leads to different complications. Acarbose (ACB) reduces hyperglycemia by inhibiting α‐amylase (AMY) and α‐glucosidase (GLU) enzymes. However, ACB causes low adherence to treatment by patients with diabetes due to its side effects. Consequently, reducing the side effects produced by ACB without compromising its efficacy is a challenge in treating T2D. Bioactive compounds (BC) are safe and could decrease the side effects compared to antidiabetic drugs such as ACB. Nevertheless, their efficacy alone concerning that drug is unknown. The scientific advances have been directed toward searching for new approaches, such as combination therapies between BC and ACB. This review analyzes the combined therapy of BC (extracts or isolates) with ACB in inhibiting AMY and GLU as a proposal to control hyperglycemia in T2D.
Practical application
Postprandial hyperglycemia is one most typical signs of type 2 diabetes, and it can have significant consequences, including cardiovascular problems. Acarbose has side effects that lead to the abandonment of treatment. Bioactive compounds in extracts or isolated forms have become a viable option for controlling hyperglycemia without side effects, but their administration alone is insufficient. The scientific advances of acarbose/bioactive compound combination therapy as a proposal for controlling hyperglycemia in T2D were analyzed. The findings suggested that bioactive compounds combined with acarbose are effective when they function synergistically or additively; however, they are not recommended in therapy when they have an antagonistic effect.
BACKGROUND: Postprandial hyperglycemia and decreased insulin secretion are relevant to risk factors in the development of type 2 diabetes and its complications. Plant foods with antidiabetic properties could be an affordable alternative in the prevention and treatment of this disease. In the present study, the antihyperglycemic and hypoglycemic activity of Bixa orellana, Psidium guajava L., Cucurbita moschata, Raphanus sativus L. and Brassica oleracea var. capitata -Mayan plant foodswere evaluated at doses of 5 and 10 mg kg −1 . Antihyperglycemic activity was measured in healthy Wistar rats and those with obesity induced by high-sucrose diet (group HSD) (20%). The hypoglycemic activity was measure in healthy CD1 mice. RESULTS: Fasting glucose, Lee index and the body weight of HSD rats increased significantly (P ≤ 0.05) after 12 weeks of induction compared to healthy rats. In healthy rats, P. guajava and Bixa orellana (10 mg kg −1 ) demonstrated higher and statistically different (P ≤ 0.05) antihyperglycemic activity compared to control acarbose (0.5 mg kg −1 ). In the HSD rat group, all Mayan plant foods (10 mg kg −1 ) demonstrated antihyperglycemic activity statistically equal (P ≤ 0.05) to control acarbose. However, Brassica oleracea and R. sativus registered the highest antihyperglycemic activity. Bixa orellana and P. guajava (5 mg kg −1 ) showed similar hypoglycemic activity (P ≤ 0.05) to glibenclamide (0.5 mg kg −1 ) but was not significant (P ≤ 0.05) compared to insulin (5 UI kg −1 ).
CONCLUSION:The present study provides valuable evidence on the possible health benefits of Mayan plant foods. These foods could contribute to the development of therapeutic diet strategies for the prevention and treatment of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.