Nowadays, the current vehicles are incorporating control systems in order to improve their stability and handling. These control systems need to know the vehicle dynamics through the variables (lateral acceleration, roll rate, roll angle, sideslip angle, etc.) that are obtained or estimated from sensors. For this goal, it is necessary to mount on vehicles not only low-cost sensors, but also low-cost embedded systems, which allow acquiring data from sensors and executing the developed algorithms to estimate and to control with novel higher speed computing. All these devices have to be integrated in an adequate architecture with enough performance in terms of accuracy, reliability and processing time. In this article, an architecture to carry out the estimation and control of vehicle dynamics has been developed. This architecture was designed considering the basic principles of IoT and integrates low-cost sensors and embedded hardware for orchestrating the experiments. A comparison of two different low-cost systems in terms of accuracy, acquisition time and reliability has been done. Both devices have been compared with the VBOX device from Racelogic, which has been used as the ground truth. The comparison has been made from tests carried out in a real vehicle. The lateral acceleration and roll rate have been analyzed in order to quantify the error of these devices.
The high rate of vehicle-crash victims has a fatal economic and social impact in today’s societies. In particular, road crashes where heavy vehicles are involved cause more severe damage because they are prone to rollover. For this reason, many researches are focused on developing RSC Roll Stability Control (RSC) systems. Concerning the design of RSC systems with an adequate performance, it is mandatory to know the dynamics of the vehicle. The main problem arises from the lack of ability to directly capture several required dynamic vehicle variables, such as roll angle, from low-cost sensors. Previous studies demonstrate that low-cost sensors can provide data in real-time with the required precision and reliability. Even more, other research works indicate that neural networks are efficient mechanisms to estimate roll angle. Nevertheless, it is necessary to assess that the fusion of data coming from low-cost devices and estimations provided by neural networks can fulfill hard real-time processing constraints, achieving high level of accuracy during circulation of a vehicle in real situations. In order to address this issue, this study has two main goals: (1) Design and develop an IoT based architecture, integrating ANN in low cost kits with different hardware architectures in order to estimate under real-time constraints the vehicle roll angle. This architecture is able to work under high dynamic conditions, by following specific best practices and considerations during its design; (2) assess that the IoT architecture deployed in low-cost experimental kits achieve the hard real-time performance constraints estimating the roll angle with the required calculation accuracy. To fulfil these objectives, an experimental environment was set up, composed of a van with two set of low-cost kits, one including a Raspberry Pi 3 Model Band the other having an Intel Edison System on Chip linked to a SparkFun 9 Degrees of Freedom module. This experimental environment be tested in different maneuvers for comparison purposes. Neural networks embedded in low-cost sensor kits provide roll angle estimations highly approximated to real values. Even more, Intel Edison and Raspberry Pi 3 Model B have enough computing capabilities to successfully run roll angle estimation based on neural networks to determine rollover risk situations, fulfilling real-time operation restrictions stated for this problem.
In recent years, there have been many advances in vehicle technologies based on the efficient use of real-time data provided by embedded sensors. Some of these technologies can help you avoid or reduce the severity of a crash such as the Roll Stability Control (RSC) systems for commercial vehicles. In RSC, several critical variables to consider such as sideslip or roll angle can only be directly measured using expensive equipment. These kind of devices would increase the price of commercial vehicles. Nevertheless, sideslip or roll angle or values can be estimated using MEMS sensors in combination with data fusion algorithms. The objectives stated for this research work consist of integrating roll angle estimators based on Linear and Unscented Kalman filters to evaluate the precision of the results obtained and determining the fulfillment of the hard real-time processing constraints to embed this kind of estimators in IoT architectures based on low-cost equipment able to be deployed in commercial vehicles. An experimental testbed composed of a van with two sets of low-cost kits was set up, the first one including a Raspberry Pi 3 Model B, and the other having an Intel Edison System on Chip. This experimental environment was tested under different conditions for comparison. The results obtained from low-cost experimental kits, based on IoT architectures and including estimators based on Kalman filters, provide accurate roll angle estimation. Also, these results show that the processing time to get the data and execute the estimations based on Kalman Filters fulfill hard real time constraints.
An improper decision for the design, selection and adjustment of the components needed to control a vehicle could generate negative effects and discomfort to the driver, where pedals play a very important role. The aim of the study is to provide a first approach to develop an embedded monitoring device in order to evaluate the posture of the driver, the influence of the clutch pedal and to advise about the possible risk. With that purpose in mind, a testbed was designed and two different sets of tests were carried out. The first test collected information about the volunteers who were part of the experiment, like the applied force on the clutch pedal or the body measurements. The second test was carried out to provide new insight into this matter. One of the more significant findings to emerge from this study is that the force applied on the clutch pedal provides enough information to determine correct driver posture. For this reason, a system composed of a pedal force sensor and an acquisition/processing system can fulfil the requirements to create a healthcare system focused on driver posture.
Many of the current research works are focused on the development of different control systems for commercial vehicles in order to reduce the incidence of risky driving situations, while also improving stability and comfort. Some works are focused on developing low-cost embedded systems with enough accuracy, reliability, and processing time. Previous research works have analyzed the integration of low-cost sensors in vehicles. These works demonstrated the feasibility of using these systems, although they indicate that this type of low-cost kit could present relevant delays and noise that must be compensated to improve the performance of the device. For this purpose, it is necessary design controllers for systems with input and output delays. The novelty of this work is the development of an LMI-Based H∞ output-feedback controller that takes into account the effect of delays in the network, both on the sensor side and the actuator side, on RSC (Roll Stability Control) systems. The controller is based on an active suspension with input and output delays, where the anti-roll moment is used as a control input and the roll rate as measured data, both with delays. This controller was compared with a controller system with a no-delay consideration that was experiencing similar delays. The comparison was made through simulation tests with a validated vehicle on the TruckSim® software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.