Summary
Design flaws and vulnerabilities inherent to network protocols, devices, and services make Distributed Denial of Service (DDoS) a persisting threat in the cyberspace, despite decades of research efforts in the area. The historical vertical integration of traditional IP networks limited the solution space, forcing researchers to tweak network protocols while maintaining global compatibility and proper service to legitimate flows. The advent of Software‐Defined Networking (SDN) and advances in Programmable Data Planes (PDP) changed the state of affairs and brought novel possibilities to deal with such attacks. In summary, the ability of bringing together network intelligence to a control plane, and offloading flow processing tasks to the forwarding plane, opened up interesting opportunities for network security researchers unlike ever. In this article, we dive into recent research that relies on SDN and PDP to detect, mitigate, and prevent DDoS attacks. Our literature review takes into account the SDN layered view as defined in RFC7426 and focuses on the data, control, and application planes. We follow a systematic methodology to capture related articles and organize them into a taxonomy of DDoS defense mechanisms focusing on three facets: activity level, deployment location, and cooperation degree. From the analysis of existing work, we also highlight key research gaps that may foster future research in the field.
In recent years, as a result of the proliferation of non-elastic services and the adoption of novel paradigms, monitoring networks with high level of detail is becoming crucial to correctly identify and characterize situations related to faults, performance, and security. In-band Network Telemetry (INT) emerges in this context as a promising approach to meet this demand, enabling production packets to directly report their experience inside a network. This type of telemetry enables unprecedented monitoring accuracy and precision, but leads to performance degradation if applied indiscriminately using all network traffic. One alternative to avoid this situation is to orchestrate telemetry tasks and use only a portion of traffic to monitor the network via INT. The general problem, in this context, consists in assigning subsets of traffic to carry out INT and provide full monitoring coverage while minimizing the overhead. In this paper, we introduce and formalize two variations of the In-band Network Telemetry Orchestration (INTO) problem, prove that both are NP-Complete, and propose polynomial computing time heuristics to solve them. In our evaluation using real WAN topologies, we observe that the heuristics produce solutions close to optimal to any network in under one second, networks can be covered assigning a linear number of flows in relation to the number of interfaces in them, and that it is possible to minimize telemetry load to one interface per flow in most networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.