Significance: Ewan Cameron reported that ascorbate, given orally and intravenously at doses of up to 10 g/day, was effective in the treatment of cancer. Double-blind placebo-controlled clinical trials showed no survival advantage when the same doses of ascorbate were given orally, leading the medical and scientific communities to dismiss the use of ascorbate as a potential cancer treatment. However, the route of administration results in major differences in ascorbate bioavailability. Tissue and plasma concentrations are tightly controlled in response to oral administration, but this can be bypassed by intravenous administration. These data provide a plausible scientific rationale for the absence of a response to orally administered ascorbate in the Mayo clinic trials and indicate the need to reassess ascorbate as a cancer therapeutic. Recent Advances: High dose ascorbate is selectively cytotoxic to cancer cell lines through the generation of extracellular hydrogen peroxide (H 2 O 2 ). Murine xenograft models confirm a growth inhibitory effect of pharmacological concentrations. The safety of intravenous ascorbate has been verified in encouraging pilot clinical studies. Critical Issues: Neither the selective toxicity of pharmacologic ascorbate against cancer cells nor the mechanism of H 2 O 2 -mediated cytotoxicity is fully understood. Despite promising preclinical data, the question of clinical efficacy remains. Future Directions: A full delineation of mechanism is of interest because it may indicate susceptible cancer types. Effects of pharmacologic ascorbate used in combination with standard treatments need to be defined. Most importantly, the clinical efficacy of ascorbate needs to be reassessed using proper dosing, route of administration, and controls.
Strategies to prevent diabetic microvascular angiopathy focus on the vascular endothelium. Because red blood cells (RBCs) are less deformable in diabetes, we explored an original concept linking decreased RBC deformability to RBC ascorbate and hyperglycemia. We characterized ascorbate concentrations from human and mouse RBCs and plasma, and showed an inverse relationship between RBC ascorbate concentrations and deformability, measured by osmotic fragility. RBCs from ascorbate deficient mice were osmotically sensitive, appeared as spherocytes, and had decreased β-spectrin. These aberrancies reversed with ascorbate repletion in vivo. Under physiologic conditions, only ascorbate's oxidation product dehydroascorbic acid (DHA), a substrate for facilitated glucose transporters, was transported into mouse and human RBCs, with immediate intracellular reduction to ascorbate. In vitro, glucose inhibited entry of physiologic concentrations of dehydroascorbic acid into mouse and human RBCs. In vivo, plasma glucose concentrations in normal and diabetic mice and humans were inversely related to respective RBC ascorbate concentrations, as was osmotic fragility. Human RBC β-spectrin declined as diabetes worsened. Taken together, hyperglycemia in diabetes produced lower RBC ascorbate with increased RBC rigidity, a candidate to drive microvascular angiopathy. Because glucose transporter expression, DHA transport, and its inhibition by glucose differed for mouse versus human RBCs, human experimentation is indicated.
We have developed a new method for identifying specific single- or double-stranded DNA sequences called nicking endonuclease signal amplification (NESA). A probe and target DNA anneal to create a restriction site that is recognized by a strand-specific endonuclease that cleaves the probe into two pieces leaving the target DNA intact. The target DNA can then act as a template for fresh probe and the process of hybridization, cleavage and dissociation repeats. Laser-induced fluorescence coupled with capillary electrophoresis was used to measure the probe cleavage products. The reaction is rapid; full cleavage of probe occurs within one minute under ideal conditions. The reaction is specific since it requires complete complementarity between the oligonucleotide and the template at the restriction site and sufficient complementarity overall to allow hybridization. We show that both Bacillus subtilis and B. anthracis genomic DNA can be detected and specifically differentiated from DNA of other Bacillus species. When combined with multiple displacement amplification, detection of a single copy target from less than 30 cfu is possible. This method should be applicable whenever there is a requirement to detect a specific DNA sequence. Other applications include SNP analysis and genotyping. The reaction is inherently simple to multiplex and is amenable to automation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.