Size, velocity and evaporation rate of droplets in an Ar inductively coupled plasma (ICP) are simultaneously measured for the first time using a novel laser based imaging technique. In interferometric droplet imaging (IDI), an interference pattern created by the reflected and refracted rays from a droplet are collected in an out-of-focus image. The droplet diameter is determined by counting the number of fringes in the collected interference pattern. Combination of IDI and particle tracking velocimetry (PTV) provides the capability of monitoring droplet properties during the journey inside ICP. Using a demountable-direct injection high efficiency nebulizer, droplets in the range of 3-30 mm in diameter traveling at 15-70 m s À1 are observed in the analytical zone of the ICP. The upper velocity threshold for surviving droplets is determined by the nebulizer gas flow rate, whereas the lower threshold is mainly influenced by thermal expansion of the plasma gas. Droplet evaporation rates (0.26-0.36 mm 2 s À1 ) are in good agreement with other reports and theoretical simulations for droplets in a 3000 K Ar environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.