We formalise a notion of dynamic rationality in terms of a logic of conditional beliefs on (doxastic) plausibility models. Similarly to other epistemic statements (e.g. negations of Moore sentences and of Muddy Children announcements), dynamic rationality changes its meaning after every act of learning, and it may become true after players learn it is false. Applying this to extensive games, we "simulate" the play of a game as a succession of dynamic updates of the original plausibility model: the epistemic situation when a given node is reached can be thought of as the result of a joint act of learning (via public announcements) that the node is reached. We then use the notion of "stable belief", i.e. belief that is preserved during the play of the game, in order to give an epistemic condition for backward induction: rationality and common knowledge of stable belief in rationality. This condition is weaker than Aumann's and compatible with the implicit assumptions (the "epistemic openness of the future") underlying Stalnaker's criticism of Aumann's proof. The "dynamic" nature of our concept of rationality explains why our condition avoids the apparent circularity of the "backward induction paradox": it is consistent to (continue to) believe in a player's rationality after updating with his irrationality.
We consider two simple variants of a framework for reasoning about knowledge amongst communicating groups of players. Our goal is to clarify the resulting epistemic issues. In particular, we investigate what is the impact of common knowledge of the underlying hypergraph connecting the players, and under what conditions common knowledge distributes over disjunction. We also obtain two versions of the classic result that common knowledge cannot be achieved in the absence of a simultaneous event (here a message sent to the whole group).
It is well-known that in finite strategic games true common belief (or common knowledge) of rationality implies that the players will choose only strategies that survive the iterated elimination of strictly dominated strategies. We establish a general theorem that deals with monotonic rationality notions and arbitrary strategic games and allows to strengthen the above result to arbitrary games, other rationality notions, and transfinite iterations of the elimination process. We also clarify what conclusions one can draw for the customary dominance notions that are not monotonic. The main tool is Tarski's Fixpoint Theorem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.