We study the possibility of computing cryptographic primitives in a fully-black-box arithmetic model over a finite field F. In this model, the input to a cryptographic primitive (e.g., encryption scheme) is given as a sequence of field elements, the honest parties are implemented by arithmetic circuits which make only a black-box use of the underlying field, and the adversary has a full (non-black-box) access to the field. This model captures many standard informationtheoretic constructions.We prove several positive and negative results in this model for various cryptographic tasks. On the positive side, we show that, under reasonable assumptions, computational primitives like commitment schemes, public-key encryption, oblivious transfer, and general secure two-party computation can be implemented in this model. On the negative side, we prove that garbled circuits, homomorphic encryption, and secure computation with low online complexity cannot be achieved in this model. Our results reveal a qualitative difference between the standard model and the arithmetic model, and explain, in retrospect, some of the limitations of previous constructions.
We study the possibility of computing cryptographic primitives in a fully black-box arithmetic model over a finite field F . In this model, the input to a cryptographic primitive (e.g., encryption scheme) is given as a sequence of field elements, the honest parties are implemented by arithmetic circuits that make only a black-box use of the underlying field, and the adversary has a full (non-black-box) access to the field. This model captures many standard information-theoretic constructions. We prove several positive and negative results in this model for various cryptographic tasks. On the positive side, we show that, under coding-related intractability assumptions, computational primitives like commitment schemes, public-key encryption, oblivious transfer, and general secure two-party computation can be implemented in this model. On the negative side, we prove that garbled circuits, additively homomorphic encryption, and secure computation with low online complexity cannot be achieved in this model. Our results reveal a qualitative difference between the standard Boolean model and the arithmetic model, and explain, in retrospect, some of the limitations of previous constructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.