This study reviews several of the recent and commonly used fracture models for predicting the notched strength of composite laminates. Emphasis has been placed on semi-empirical fracture models which are operationally simple to utilize. The review is sufficiently detailed so that it is self-contained.
Off-axis static and fatigue behavior of AS/3501-5A graphite/epoxy was studied in an effort to characterize the matrix/interface-controlled failure. Seven different off-axis angles were tested: 0, 10, 20, 30, 45, 60, and 90 deg. Initial (static) and post-fatigue residual strength were obtained together with S-N relationships. Fracture surfaces were examined through photomicrographs and stereo (three-dimensional) scanning electron microscope (SEM) photographs, in order to delineate failure modes, and the results of these inspections are discussed. The off-axis static strength, including scatter, was fully characterized by a polynomial and a nondimensional strength parameter. Essentially, no strength or modulus degradation was observed in the specimens surviving fatigue loading of 106 cycles regardless of the off-axis angle or fatigue stress level. When fatigue stress level is normalized with respect to static strength, all data seem to fall on the same S-N curve. Fatigue failure occurred without any warning or visible damage. Matrix failure characteristics vary with off-axis angle and appear in the form of serrations and axial and transverse cracks. Large scatter in life was observed at all off-axis angles; however, since the number of specimens employed in the present study is not sufficient to provide meaningful statistical S-N data, a more detailed investigation of the off-axis (and angle ply) behavior of graphite/epoxy composites is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.