Although this maximum allowable uncertainty cannot be a universal value-as it will depend on the performance of each analyser-our results have led us to propose the conservative value of 2%. We have also proposed a methodology for improving data quality which could be easily implemented by those responsible for air quality data validation.
An assessment of uncertainty in the hourly and annual limit values of NO 2 measurements by molybdenum NO2-to-NO conversion followed by chemiluminescence detection was carried out at 3 different span concentrations (100, 300 and 700 nmol mol (-1)). The uncertainty of the linearity term was calculated for each span concentration by considering (i) a zero-and-span calibration and (ii) a multipoint calibration. Two uncertainty models were applied for the overall uncertainty estimation: (i) the Standard EN 14211 and (ii) a mechanistic model that considers the NO 2 reduction in the converter. The main difference between these models stems from considering or not the possible covariances derived from interactions between NO x and NO concentrations and the converter's efficiency. For both models, the span determined whether or not it was possible to meet the quality objective requested by the EU Air Quality Directives in the annual limit value when no linearity corrections were performed in environments with NO z/NO2 ratios ≤ 0.04. In environments with significant amounts of NO z species (NOz/NO2≥ 0.12), the expanded uncertainty can easily be higher than the data quality objective if bias' corrections are not or cannot be applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.